Электроэнергия товар который не хранится. Как технологии накопления энергии изменят мир

Повсеместное распространение возобновляемых источников энергии ведет к тому, что проблема сохранения излишков электричества, полученного в часы пикового производства, для использования их затем в часы недостаточной выработки (что особенно актуально для и енерации), все более остро встает как в частном, так и в промышленном масштабе.

Так, в первой половине 2017 года штату в пришлось избавиться от 300 тыс магаватт электроэнергии из возобновляемых источников, потому что ее негде было хранить. По данным , по этой же причине теряет порядка 17% произведенной электроэнергии.

Хранилища энергии промышленного масштаба

Автономные энергохранилища необходимы для обеспечения бесперебойных поставок энергии из возобновляемых источников в районах, удаленных от общих сетей, например, на небольших островах или в трудонодоступных местах Крайнего Севера. Ранее подобные локации могли рассчитывать только на электроэнергию, произведенную дизельными генераторами, и были крайне зависимы от внешних поставок топлива.

Домашние системы хранения энергии

С точки зрения развития мировой экономики важным является дальнейшее удешевление домашних систем хранения энергии. По состоянию на конец 2016 года, 55 млн домохозяйств или 275 млн человек использовали электроэнергию от домашних или районных микроэлектростанций благодаря значительному снижению цен на . В за несколько последних лет около 40% всех домашних фотоэлектрических систем было оборудовано блоками для хранения энергии при небольшой финансовой поддержке со стороны государства. В в 2016 году без какой-либо государственной помощи было установлено около 7 тыс аккумуляторных систем.

Рынок аккумуляторов для хранения энергии достиг объема около 1 ГВт в 2016 году, благодаря благоприятной политике государств и снижению стоимость батарейного оборудования, по данным .

Автомобильные аккумуляторы

Перспективы мирового рынка хранения энергии

Технологии хранения энергии

Все существующие на данный момент системы хранения энергии дороги для крупных промышленных объемов, поэтому различные производители и государства делают масштабные инвестиции в создание новых способов хранения больших объемов энергии.

Литий-ионные аккумуляторы (Li-ion) являются наиболее распространенным типом батарей для различного вида электронных устройств в мире на данный момент. Они используются практически во всех видах техники, в том числе мобильных телефонах, планшетах, ноутбуках, а также .

Несмотря на популярность, такие батареи имеют множество недостатков, такие как способность к самовозгоранию, «эффект памяти», быстрая потеря емкость при низких температурах и т.д.

Удешевление производства литий-ионных аккумуляторных батарей происходит темпами, превышающими спрогнозированные ранее: уже достигнут уровень, ожидаемый к 2020 году. Открытие огромных заводов подобных может еще более ускорить этот процесс.

Хранение энергии с помощью гидроаккумулирующих электростанций

Концепция динамической зарядки, или vehicle-to-grid (V2G), рассматривает возможность использования для создания общих электросетей, действующих наподобие виртуальных электростанций.

По статистике, 95% времени любое частное транспортное средство стоит без движения. Разработчики данной концепции предполагают, что аккумулятор электромобиля может заряжаться в часы минимальной нагрузки и отдавать в сеть электричество в часы пиковой нагрузки с поправкой на моменты использования его владельцем по прямому назначению. Водитель сможет таким образом заработать порядка 4000 долларов США в год за счет разницы цен на электроэнергию в разное время суток.

Тестирование подобных проектов начала автомобильная компания совместно со своими партнерами в , а также в . Вместе с тем, в уже работает первый в мире полнофункциональный коммерческий V2G хаб.

Автомобиль также можно использовать при проектировании электросетей домохозяйств как средство частного домашнего хранения энергии по аналогии с другими подобными системами, такими как .

Экономия электричества в итоге приводит к двум хорошим вещам: уменьшение эффекта глобального потепления, а также сохранение ваших сбережений в течение длительного времени. Осмотритесь у себя дома или в офисе: каждый прибор, расходующий энергию, может стать более экономным. Изолирование дома и изменение повседневных привычек – эти действия помогут заметно снизить потребление электроэнергии. Читайте далее, чтобы узнать, как сэкономить на электричестве.

Шаги

Освещение

  1. Выберите естественный свет. Откройте шторы и позвольте солнцу залить вашу комнату! Использование естественного света днем может заметно снизить ваш расход электричества. Это применимо как для проведенного вами времени на работе, так и для времени дома. Естественный свет повышает наше настроение, добавляя вам еще больше желания немедленно открыть жалюзи.

    • Постарайтесь организовать свое рабочее место так, чтобы на него попадал естественный свет. Постарайтесь выключать настольные лампы всегда, когда возможно. Если вам не хватает света, воспользуйтесь маломощной настольной лампочкой.
    • Купите полупрозрачную тюль или жалюзи, чтобы ваша личная жизнь осталась личной, а свет продолжал заполнять пространство.
  2. Смените ваши лампочки. Вы очень сэкономите электроэнергию, если замените обычные лампы накаливания на новые энергосберегающие лампы или лампы, выполненные по технологии LED. Тогда как обычные лампы накаливания дают свет за счёт выделения тепла, энергосберегающие лампы лучше сохраняют электричество и имеют долгий срок службы.

    • Энергосберегающие лампы стали первой альтернативой лампам накаливания, они используют около четверти энергии, затрачиваемой лампами накаливания. Они содержат достаточное количество ртути, поэтому, если такая лампочка перегорит, от нее нужно избавиться должным образом.
    • Лампочки с технологией LED не так давно появились на рынке. Они дороже обычных энергосберегающих ламп, но они служат еще дольше и не содержат ртути.
  3. Выключайте свет. Это самый простой способ экономить электроэнергию, и он действительно работает. Начните обращать внимание на то, сколько ламп горит у вас в доме в определенное время. Подумайте, сколько ламп вам действительно необходимо использовать. Возьмите себе в привычку каждый раз, когда выходите из комнаты, выключать за собой свет.

    • Если вы хотите сэкономить еще больше, постарайтесь в ночное время находиться всей семьей в одной-двух комнатах, вместо того, чтобы включать свет во всем доме.
    • Для максимальной экономии электричества – используйте свечи! Этот старомодный способ освещения ночью эффективен, романтичен и очень спокоен. Если вам не удобно постоянно использовать свечи, попробуйте делать это хотя бы раз в неделю. Будьте осторожны со свечами, если у вас дома есть дети, или, по крайней мере, убедитесь, что все члены вашей семьи знают, как обращаться со свечками.

    Домашние приборы

    1. Отключите от сети приборы, которые вы не используете. Вы знали, что приборы, которые просто подключены в сеть, продолжают потреблять электричество, даже если они выключены? Даже такой прибор, как кофеварка, просто включенный в сеть, продолжает потреблять энергию, при том, что последняя кружка кофе была выпита уже достаточно давно.

      • Выключите ваш компьютер и отключите его от сети в конце дня. Компьютеры расходуют большую долю электроэнергии, поэтому, вы тратите много энергии и денег, когда они подключены.
      • Не оставляйте ваш телевизор все время подключенным к сети. Может быть, неудобно каждый раз вытаскивать его из розетки, однако, ваши старания окупятся.
      • Отсоедините от сети вашу звуковую систему и колонки. Один из самых бездарных способов потратить электроэнергию - оставить их включенными, когда они не используются.
      • Не забывайте и о мелкой технике, такой как зарядки для телефонов, кухонные приборы, фены для волос, и остальные вещи, которые могут потреблять электричество.
    2. Замените старые приборы на новые - с лучшим потреблением энергии. Компании не переживали о сохранении энергии, когда производили приборы раньше. Новые модели нацелены на сохранение энергии, уменьшение платы за свет. Если у вас есть старый холодильник, электрическая печка, или духовка, посудомоечная машина, стиральная машинка, сушилка, или другая крупная бытовая техника, подумайте о ее замене.

      • Посмотрите рейтинг сбережения электроэнергии на новую технику. Он поможет вам оценить, как много электроэнергии потребляет прибор. Большинство приборов с высоким рейтингом энергосбережения стоят на порядок дороже тех, у которых рейтинг ниже, однако эта разница в цене со временем окупится за счет сокращения расходов за электричество.
      • Если для вас замена бытовой техники дома не является приемлемым вариантом, есть множество способов снизить затраты на электроэнергию.
        • Заполните посудомоечную машину полностью, вместо того, чтобы мыть малые объемы посуды.
        • Не открывайте духовку во время приготовления в ней пищи, так как вы выпускаете из нее жар и потребуется больше энергии, чтобы вернуть прежнюю температуру.
        • Не стойте перед открытым холодильником, размышляя, что бы вам съесть. Откройте и закройте его как можно скорее. Так же, проверьте герметичность дверцы холодильника и замените резинки, если потребуется.
        • Полностью загружайте стиральную машину, вместо того, чтобы стирать маленькими порциями.
    3. Уменьшайте ваше пользование бытовыми приборами. В былые времена люди не пользовались бытовой техникой для ведения домашнего хозяйства; попробуйте использовать только те приборы, которые действительно нужны. Сокращение использования бытовой техники может отнимать большее количество времени, однако, если в этом процессе будет принимать участие вся семья – вы можете управляться со всем заметно быстрее.

      • Большинство людей стирают одежду чаще, чем это необходимо; постарайтесь снизить количество стирок до одного раза в неделю.
      • Протяните бельевую веревку на балконе или на заднем дворе и развешивайте на ней мокрую одежду, вместо того, чтобы пользоваться электрической сушилкой.
      • Мойте посуду руками (так же экономя воду), вместо использования посудомоечной машины.
      • Постарайтесь выпекать что-либо один раз в неделю, во время этого вы сможете приготовить несколько различных блюд. Таким образом, вам не придется нагревать духовку снова и снова.
      • Избавьтесь от маленьких приборов, которые вам действительно не нужны, такие как электрические освежители воздуха. Просто откройте окна!

    Обогрев и охлаждение

    1. Утеплите дом. Качественная изоляция окон и дверей поможет хорошо сохранить электроэнергию. Изоляция позволит вашему дому сохранять охлажденный воздух внутри в летнее время, а так же удерживать тепло и не пропускать холодный воздух в зимнюю пору.

      • Наймите человека, который сможет проверить изоляцию вашего дома и определить, достаточно ли она качественная. Проверьте чердак, пол, потолок, стены и подвал. Возможно, вам потребуется новая изоляция для вашего дома.
      • Проклейте ваш дом, используя монтажную ленту и утеплитель в дверных проемах, окнах и вокруг оконных форточек. Вы также можете поставить стеклопакеты – они лучше удерживают тепло во время зимы.

Электроэнергетика - одна из немногих областей, в которой нет масштабного хранения произведенной «продукции». Промышленное хранение энергии и производство различного рода накопителей - следующий шаг в большой электроэнергетике. Сейчас эта задача стоит особенно остро - вместе со стремительным развитием возобновляемых источников энергии. Несмотря на бесспорные достоинства ВИЭ, остается один важный вопрос, который необходимо решить, прежде чем массово внедрять и применять альтернативные энергоносители. Хотя энергия ветра и солнца является экологически чистой, ее выработка имеет «прерывистый» характер и требуется хранение энергии для последующего использования. Для многих стран особенно актуальной задачей было бы получение технологий сезонного хранения энергии - из-за больших колебаний в ее потреблении. Издание Ars Technica подготовило список лучших технологий хранения энергии, мы расскажем о некоторых из них.

Гидроаккумуляторы

Самая старая, отлаженная и распространенная технология хранения энергии в больших объемах. Принцип работы гидроаккумулятора следующий такой: имеется два резервуара для воды - один расположен над другим. Когда спрос на электроэнергию невелик, энергия использутеся для закачки воды в верхний резервуар. В пиковые часы потребления электричества вода сливается вниз, на установленный там гидрогенератор, вода крутит турбину и вырабатывает электричество.

В будущем Германия планирует использовать старые угольные шахты для создания гидроаккумуляторов, а немецкие исследователи работают над созданием гигантских бетонных сфер для гидронегерации, размещенных на дне океана. В России есть ЗагорскаяГАЭС, расположенная на реке Кунье у поселка Богородское в Сергиево-Посадском районе Московской области. Загорская ГАЭС - важный инфраструктурный элемент энергосистемы центра, участвует в автоматическом регулировании частоты и перетоков мощности, а также покрывая суточные пиковые нагрузки.

Как рассказал Игорь Ряпин, начальник департамента Ассоциации «Сообщества потребителей энергии» в рамках конференции «Новая энергетика»: Internet of Energy, организованной Энергетическим центром бизнес-школы «Сколково», установленная мощность всех гидроаккумуляторов в мире - порядка 140 ГВт, к преимуществам этой технологии относятся большое количество циклов и длительный срок работы, эффективность порядка 75-85%. Однако для установки гидроаккумуляторов требуются особые географические условия и она является дорогостоящей.

Накопители энергии сжатого воздуха

Этот способ хранения энергии по принципу работы похож на гидрогенерацию - однако вместо воды в резервуары нагнетается воздух. При помощи двигателя (электрического или иного) воздух закачивается в накопитель. Для получения энергии сжатый воздух выпускается и вращает турбину.

Недостаток такого рода накопителей - низкий КПД из-за того, что часть энергии при сжатии газа переходит в тепловую форму. Эффективность не более 55%, для рационального использования накопитель требует много дешевой электроэнергии, поэтому на данный момент технология используется преимущественно в экспериментальных целях, общая установленная мощность в мире не превышает 400 МВт.

Расплавленная соль для хранения солнечной энергии

Расплавленная соль удерживает тепло в течение длительного времени, поэтому ее размещают на солнечных тепловых установках, где сотни гелиостатов (больших сконценирированных на солнце зеркал) собирают тепло солнечного света и нагревают жидкость внутри - в виде расплавленной соли. Затем она направляется в резервуар, далее посредством парогенератора приводит во вращение турбину, так вырабатывается электроэнергия. Одним из плюсов является то, что расплавленная соль функционирует при высокой температуре - более 500 градусов по Цельсию, что способствует эффективной работе паровой турбины.

Эта технология помогает продлевать рабочее время, либо обогревать помещения и давать электричество в вечернее время.

Подобные технологии используются в солнечном парке имени Мохаммеда ибн Рашида Аль Мактума - самая крупной в мире сети солнечных электростанций, объединенных в едином пространстве в Дубаи.

Проточные редокс-системы

Проточные батареи представляют собой огромный контейнер с электролитом, который пропускается через мембрану и создает электрический заряд. Электролитом может служить ванадий, а также растворы цинка, хлора или соленая вода. Они надежны, просты в эксплуатации, у них долгий срок службы.

Пока нет коммерческих проектов, общая установленная мощность - 320 МВт, в основном в рамках исследовательских проектов. Главный плюс - пока единственная технология на батареях с длительной выдачей энергии - более 4 часов. Среди недостатков - громоздкость и отсутствие технологии утилизации, что является общей проблемой для всех батарей.

Немецкая электростанция EWE планирует построить в Германии крупнейшую в мире проточную батарею на 700 МВт/ч в пещерах, где раньше хранили природный газ, сообщает Clean Technica.

Традиционные аккумуляторы

Это батареи, подобные тем, что работают в ноутбуках и смартфонах, только промышленного размера. Tesla поставляет такие батареи для ветряных и солнечных станций, а компания Daimler использует для этого старые автомобильные аккумуляторы.

Термальные хранилища

Современный дом необходимо охлаждать - особенно в регионах с жарким климатом. Термальные хранилища позволяют в течение ночи заморозить хранящуюся к цистернах воду, днем лед тает и охлаждает дом, без использования привычного всем дорогостоящего кондиционера и лишних расходов электроэнергии.

Калифорнийская компания «Ice Energy» разработала несколько подобных проектов. Их идея заключается в том, что лед производится только во время непиковой нагрузки на электросети, а затем, вместо расхода дополнительной электроэнергии, используется лед для охлаждения помещений.

«Ice Energy» сотрудничает с австралийскими фирмами, которые собираются внедрять технологию «ледяного аккумулятора« на рынке. В Австарлии из-за активного солнца развито использование солнечных батарей. Сочетание солнца и льда увеличит общую энергоэффективность и экологичность домов.

Маховик

Супермаховик - это инерционный накопитель. Запасенную в нем кинетическую энергию движения можно преобразовать в электричество с помощью динамо-машины. Когда возникает потребность в электричестве, конструкция вырабатывает электрическую энергию за счет замедления маховика.

Wikimedia Commons

Пожалуй, самая старая форма современного хранения энергии, привязанного к энергосети. Принцип работы прост: имеется два резервуара для воды, один выше другого. Когда потребность в электричестве низкая, энергию можно использовать для закачки воды наверх. В пиковые часы вода устремляется вниз, вращая гидрогенератор и вырабатывая электричество. Подобные проекты разрабатывает, например, Германия в заброшенных угольных шахтах или сферических контейнерах на дне океана.

Сжатый воздух

Power South

В целом этот способ напоминает предыдущий, за исключением того, что вместо воды в резервуары нагнетается воздух. При необходимости воздух выпускается и вращает турбины. Эта технология существует в теории уже несколько десятков лет, но на практике, из-за ее высокой стоимости, есть всего лишь несколько рабочих систем и чуть больше - испытательных. Канадская компания Hydrostor разрабатывает в Онтарио и Арубе крупный адиабатический компрессор.

Расплавленная соль

SolarReserve

Солнечную энергию можно использоваться для нагревания соли до нужной температуры. Полученный пар либо немедленно перерабатывается генератором в электричество, либо хранится в течение нескольких часов в виде расплавленной соли, чтобы, например, нагревать дома вечером. Один из подобных проектов - солнечный парк имени Мохаммеда ибн Рашида Аль Мактума - в Арабских Эмиратах. А в лаборатории Alphabet X возможность использования расплавов солей в сочетании с антифризом для того, чтобы сохранить излишки энергии Солнца или ветра. Недавно в Технологическом институте Джорджии построили более эффективную систему, в которой соль заменена на жидкий металл.

Проточные батареи

Ученые ЦЕРНа: «Вселенная не должна существовать»

Окислительно-восстановительные проточные батареи состоят из огромных цистерн с электролитом, которые пропускаются через мембраны и создают электрический заряд. Обычно в качестве электролита используется ванадий, а также растворы цинка, хлора или соленая вода. Они надежны, просты в эксплуатации, у них долгий срок службы. Крупнейшую в мире проточную батарею построить в пещерах Германии.

Традиционные аккумуляторы

SDG&E

Calmac

Ночью хранящуюся в цистернах воду замораживают, а днем лед тает и охлаждает соседние дома, позволяя экономить на кондиционерах. Эта технология привлекательна для регионов с жарким климатом и прохладными ночами, например, для или Калифорнии. В мае этого года компания NRG Energy поставила 1800 промышленных ледяных батарей предприятию Southern California Edison.

Супермаховик

Beacon Power

Эта технология предназначена для накапливания кинетической энергии. Электричество запускает мотор, который запасает энергию вращения в барабане. Когда она нужна, маховик замедляется. Изобретение не получило широкого распространения, хотя оно может применяться для обеспечения бесперебойного питания.

Международное энергетическое агентство прогнозирует рост глобальной доли возобновляемой энергетики в общей выработке энергии до 28% к 2021 году. Одновременно будут развиваться технологии, способные решить главную проблему «зелёной» энергетики – неравномерность выработки электроэнергии. Специалисты уверены, что индустрию хранения энергии ожидает бурный рост уже в ближайшем будущем.

Солнечная электростанция эффективно работает только в светлое время дня и при безоблачном небе, а ветряк – когда дует ветер, и эти провалы в выработке нужно как-то компенсировать. Например, накапливать часть вырабатываемой энергии при помощи промышленных аккумуляторов, а расходовать её во время вечерних и утренних пиков потребления.

Хранилища энергии пригодятся и в случае аварий в энергосистемах. Как отмечает глава учебного центра АББ в РФ Максим Рябчицкий, сегодня объёмы выработки и потребления электричества сбалансированы и электростанции подстраиваются под график потребителя. Но в случае внезапных отключений в энергосистеме, по масштабам сопоставимой с российской, ситуацию спасёт аккумулятор мощностью от 10–20 МВт, способный 1,5–2 часа закрывать энергодефицит.

При поддержке государства

По мнению главы «Роснано» Анатолия Чубайса, доля ВИЭ в общем объёме генерации к 2050 году составит 40% мирового энергобаланса, а хранение электроэнергии станет коммерчески состоявшейся технологией, в результате чего «мы придём к другой электроэнергетике».

«Мировая и российская электроэнергетика находится в одном шаге от преобразования базового технологического принципа – соответствия уровня генерации и потребления в единый момент времени. Прорывная технология, которая позволит разделить генерацию и потребление, – накопление энергии. Эта технология полностью изменит всю систему диспетчеризации, соотношение традиционной и альтернативной электроэнергетики и многое другое. Если к технологии накопления энергии добавить хорошую IT-логику, то это будет, бесспорно, революция», – считает Чубайс.

Есть понимание проблемы и на государственном уровне. В начале этого года вице-премьер Аркадий Дворкович поручил Минэнерго и «Роснано» разработать техзадание на создание госпрограммы поддержки кластера промышленного хранения электроэнергии (power storage). Участники совещания с вице-премьером также сочли, что промышленное хранение электроэнергии находится в стартовой точке бума, который затронет изолированные, малые электрические хозяйства и транспорт.

В «Роснано» считают, что господдержка позволит сформировать на рынке пул национальных игроков. Стимулировать спрос на накопители планируется за счёт компенсации рисков инвестпроектов и повышения их инвестпривлекательности. Использование промышленных аккумуляторов позволит создавать экономически эффективные локальные энергосистемы, сгладить пики потребления и создавать рынки торговли электроэнергией для распределённой энергетики, отмечают в компании.

Электрохимия и жизнь

В настоящее время придумано много способов хранения электроэнергии в больших масштабах, однако приоритет отдаётся строительству обычных электрохимических аккумуляторов размером с дом.

Совокупная мощность работающих и строящихся промышленных хранилищ энергии в мире, по данным консалтинговой компании IHS, составляет около 3 ГВт. Однако аналитики уверены, что индустрию хранения энергии ожидает бурный рост уже в ближайшем будущем.

Основные проблемы опытных промышленных накопителей – дороговизна и низкая ёмкость, массовой экономически оправданной технологии их сооружения пока нет (особняком тут стоит технология Tesla, о которой ниже). По словам Максима Рябчицкого, исследования, которые велись последние 20 лет, создали много образцов (вплоть до самых экзотических) power storage, но они пока не ушли дальше опытно-промышленной эксплуатации, а существующие аккумуляторы слишком дороги и имеют низкий КПД. То есть пока аккумуляторы дороже самих СЭС.

Директор Ассоциации предприятий солнечной энергетики Антон Усачёв прогнозирует, что при росте доли ВИЭ в энергобалансе будет расти потребность в ёмких системах power storage, наибольший спрос будет в странах, планирующих долю ВИЭ в генерации не менее 25–30%.

Мощность используемых сегодня в мире решений power storage, как правило, не выше 1–2 МВт. Так, итальянская Enel запустила осенью 2015 года в Катании первое хранилище электроэнергии при солнечной станции на 10 МВт с ёмкостью батарей 2 МВт ч и планирует ВЭС на 18 МВт на юге Италии с литийионными батареями также в 2 МВт ч.

Крупнейший в Европе промышленный накопитель энергии появился в немецкой деревне Фельдхайм. Предприятие официально называется Региональной регулирующей электростанцией. Назначение станции мощностью 10 МВт и ёмкостью аккумуляторов 10,8 МВт ч – накапливать избыточную электроэнергию, вырабатываемую ВИЭ, обеспечивать стабильность электросети, сглаживать временные изменения частоты.

Ряд компаний (RWE, Vionx, LG, SMA, Bosch, JLM Energy, Varta) начали поставлять на рынок промышленные и бытовые системы хранения энергии, которые также работают на основе разновидностей литийионных аккумуляторов, в первую очередь литий-железо-фосфатных (LiFePO4), а также ванадиевых батарей. Дальше других продвинулась Япония с технологией горячих аккумуляторов. В этом ряду нельзя не отметить наработки компании Tesla, которая и здесь впереди планеты всей, не в последнюю очередь благодаря грамотному пиару своей продукции, отличному дизайну, продвинутым технологическим решениям и «агрессивной» цене.

В прошлом году Илон Маск презентовал проект Powerwall – настенную литийионную батарею для дома ёмкостью 10 КВт ч (это примерно дюжина стандартных автомобильных аккумуляторов). Батареи достаточно для покрытия суточной потребности в электроэнергии средней американской семьи. Стоит она $3500. Интересно, что разработка Tesla позволяет наращивать систему до девяти штук, присоединяя к ней дополнительные единицы Powerwall.

Однако по-настоящему промышленным аккумулятором, скорее всего, станет другая разработка Tesla – аккумулятор Powerpack. С виду и по размерам он похож на холодильник и имеет ёмкость в десять раз большую, чем Powerwall – 100 КВт ч. Powerpack также является модулем. Добавляя такие модули в хранилище, можно наращивать ёмкость последнего практически до бесконечности. По словам Илона Маска, в США уже есть энергетические компании, работающие на основе технологии Powerpack и имеющие хранилища ёмкостью 250 МВт ч.

По расчётам компании PwC, хранение и распределение электроэнергии по сети в объёме 5 тысяч МВт ч может быть экономически выгодным в США при стоимости с учётом монтажа на уровне $350 за 1 кВт ч. Цена за пункт ёмкости при использовании модулей Powerpack равна $250.

Альтернативное накопительство

Альтернативой электрохимическим промышленным аккумуляторам может стать строительство объектов «зелёной» энергетики рядом с ГАЭС – гидроаккумулирующими станциями, запасающими энергию в виде воды. Изначальное предназначение ГАЭС – выравнивать неоднородность суточного графика электрической нагрузки. С развитием ВИЭ гидроаккумулирующие станции смогут также нивелировать дискретность выработки энергии СЭС и ветряками.

По данным Департамента энергетики США, в мире в настоящее время работает 292 гидроаккумулирующих комплекса общей мощностью 142 ГВт. Ещё 46 станций общей мощностью 34 ГВт строятся. КПД современных ГАЭС составляет 70–75%.

«Среди всех технологий хранения энергии гидроаккумулирующие комплексы являются самыми надёжными, опробованными и коммерчески выгодными аккумуляторами», – считает сотрудник департамента энергии Национальной лаборатории в Аргонне (штат Иллинойс) Владимир Коритаров. По его мнению, 98% действующих хранилищ энергии в мире и есть ГАЭС. Сегодня ГАЭС вновь в центре внимания, и не в последнюю очередь в связи с бумом ВИЭ, говорит Коритаров.

В Испании, например, где порядка 20% энергии вырабатывается ветром, хранилища ГАЭС гидроузла Cortes-La Muela наполняются ВЭС в ветреные ночи, а когда ветер утихает или потребность в энергии возрастает, вода из верхнего резервуара используется для вращения турбин и выработки энергии. Это самый большой в Европе комплекс такого рода мощностью 1762 МВт, способный обеспечивать энергией 500 000 домов.

В США на стадии планирования находится проект ГАЭС JD Pool в штате Вашингтон мощностью 1200 МВт. Пара его верхних резервуаров будет размещена между рядами ветровых турбин на плато Колумбия. Общая мощность 47 ветровых электростанций, находящихся в штатах Вашингтон и Орегон в непосредственной близости от предполагаемого места строительства ГАЭС, составляет 4695 МВт. Этого достаточно, чтобы не только снабжать электроэнергией ближайшие предприятия и домохозяйства, но и заполнять водой резервуары JD Pool.

А вот в совмещении СЭС и ГАЭС сегодня есть определённые сложности. Как правило, крупные солнечные электростанции размещены в жарких пустынных местностях, где наблюдаются проблемы с водой. Хотя при наличии полноводных подземных горизонтов и эта проблема решаема. Вот только воды из-под земли придётся выкачивать много, ведь ГАЭС – сооружение, размер которого имеет значение.

Фантазия без тормозов

Когда есть заказ и подразумевается бюджет, мозги учёных начинают работать с удвоенной силой. Поиски альтернативных химическим аккумуляторам способов хранения энергии идут в лабораториях всего мира, порождая подчас весьма экзотические проекты.

Британский Департамент энергии и изменения климата проинвестировал разработку хранилища энергии, в котором работает сжиженный воздух. Установка получила название LAES и развивает мощность 350 КВт ч. Её испытания прошли успешно, и проект имеет перспективы по масштабированию.

Работает установка следующим образом. При наличии избыточной электроэнергии воздух сжижается в ёмкости высотой 12 м, а диаметром – 3 м. А когда нужно, снова превращается в ток.

В местности Техачапи (штат Калифорния, США) действует другой необычный экспериментальный накопитель, запасающий энергию при помощи гравитации. Называется он ARES и с виду похож на детскую железную дорогу (ширина колеи – всего 381 мм). Когда ветер дует, вагончик, приводимый в движение электромотором, едет по ветке в гору, накапливая энергию, а когда стихает – устройство скатывается вниз. В этот момент его двигатель работает как генератор, подавая энергию в сеть.

Горка находится рядом с парком ветрогенераторов. Вес экспериментальной тележки – 5670 кг. Один из плюсов проекта – более низкая стоимость жизненного цикла по сравнению с батареями. При этом эффективность системы составляет 86%.

В дальнейшем в соседней Неваде, где по причине отсутствия воды нельзя соорудить ту же ГАЭС, планируется построить систему с объёмом запасаемой энергии 12,5 МВт ч. Это будет однопутная дорога длиной 8 км и уклоном 6,6 градусов. Двигаться по ней будут 17 сцепок: по два локомотива массой по 220 тонн и два вагона с бетонными блоками массой по 150 тонн каждый.

Источники: ИТАР-ТАСС, газета «Коммерсантъ», сайты renewableenergyworld.com, digitalsubstation.ru, tesla.com/powerwall , resilience.org , alternativenergy.ru


Похожие статьи

© 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.