Математическое моделирование работы строительной конструкции. Математическое моделирование в строительстве Расход материалов на один замес определяется по формулам

Учебное пособие. - Оренбург: ГОУ ОГУ, 2009. - 161 с.В пособии рассмотрены особенности применения и методики численных методов решения задач по анализу и оптимизации структуры и свойств строительных материалов и изделий, а также технологических режимов их производства.
Учебное пособие предназначено для студентов, обучающихся по специальности 270106 (бывшая 290600 "Производство строительных материалов, изделий и конструкций"), всех форм обучения. Представленный в пособии материал может быть использован при выполнении учебных научно-исследовательских работ.Исторический обзор применения моделирования.
Основы системного анализа и моделирования.
Этапы системного анализа.
Существующие подходы анализа систем.
Понятие о моделировании. Классификация моделей.
Основные этапы и принципы моделирования.
Элементы математической статистики.
Понятие о математической статистике.
Задачи математической статистики.
Первый этап - сбор и первичная обработка данных.
Второй этап - определение точечных оценок распределения.
Третий этап - определение интервальных оценок, понятие о статической гипотезе.
Четвертый этап - аппроксимация выборочного распределения теоретическим законом.
Области применения статистических методов обработки данных.
Статистический контроль прочности бетона.
Метод множественной корреляции.
Математическое моделирование в решении строительно-технологических задач.
Понятие о полиноме, отклике, факторах и уровнях варьирования, факторном пространстве.
Первичная статистическая обработка результатов эксперимента.
Математическая модель эксперимента. Метод наименьших квадратов.
Получение некоторых эмпирических формул.
Метод наименьших квадратов для функции нескольких переменных.
Дисперсионная матрица оценок.
Критерии оптимального планирования.
Планы для построения линейных и неполных квадратичных моделей.
Планы для построения полиномиальных моделей второго порядка.
Регрессионный анализ модели.
Анализ математической модели.
Решение оптимизационных задач.
Моделирование свойств смесей.
Принципы имитационного моделирования.
Решение рецептурно-технологических задач на ЭВМ в режиме диалога.
Основные виды задач, решаемых при организации планирования и управления в строительстве.
Математические модели некоторых задач в строительстве.
Примеры решения некоторых задач.
Решение транспортной задачи.
Решение задачи о ресурсах.
Решение задачи нахождения оптимальной массы фермы.
Организационные задачи.
Моделирование в строительстве.
Модели линейного программирования.
Нелинейные модели.
Модели динамического программирования.
Оптимизационные модели (постановка задач оптимизации).
Модели управления запасами.
Целочисленные модели.
Цифровое моделирование (метод перебора).
Вероятностно-статистические модели.
Модели теории игр.
Модели итеративного агрегирования.
Организационно-технологические модели.
Графические модели.
Сетевые модели.
Организационное моделирование систем управления строительством.
Основные направления моделирования систем управления строительством.
Аспекты организационно-управленческих систем (моделей).
Деление организационно-управленческих моделей на группы.
Виды моделей первой группы.
Виды моделей второй группы.

1.3.1. Совокупность математических выражений, отражающих связь между параметрами описания и поведения системы, а также способ их преобразования, приводящий к отысканию значений параметров, принимаемых неизвестными, условимся считать математической моделью процесса, явления, системы.

Применительно к расчету строительной конструкции параметрами описания системы будут геометрия и топология системы, характеристики материалов, топология и характеристика воздействий.

Параметры поведения системы - изменения геометрии и топологии системы, характеристик материалов и напряжений.

1.3.2. Задачи, в которых известны параметры описания системы, а не известны - поведения, принято называть прямыми, решаемыми классическими методами строительной механики, теории упругости, сопротивления материалов. Для решения основных типов таких задач разработаны методы решения и составлены программы для ЭВМ, позволяющие автоматически получать результаты, изменяя исходные данные. Решение, как правило, вытекает из детерминированной системы уравнений, однозначно связывающей исходную информацию о системе с результатом расчета.

Задачи, в которых неизвестные - некоторые параметры описания системы, называются обратными и решаются методами идентификации систем с применением систем уравнений, количество которых существенно превышает количество неизвестных. Применительно к строительным конструкциям такие задачи возникают при экспериментальных исследованиях, в том числе при реконструкции зданий и сооружений, и связаны с определением жесткости элементов, узлов и опорных частей, а также величины действующей нагрузки .

1.3.3. Математические модели работы строительных конструкций вытекают из следующих основных вариационных принципов механики:

возможных изменений перемещений (возможной работы); как частный случай, известный принцип Лагранжа, связанный с понятием полной потенциальной энергии деформации, получаем дифференциальные уравнения равновесия;

возможных изменений напряженного состояния (возможной дополнительной работы); частный случай - принцип Кастильяно, связанный с понятием дополнительной потенциальной энергии деформации; получаем дифференциальные уравнения равновесия .

Построение смешанного функционала позволяет получить уравнения смешанного метода .

Данные принципы и методы решения систем уравнений применялись для решения задач анализа континуальных систем типа пластин и оболочек. При этом для решения дифференциальных уравнений могут быть привлечены математические методы дискретизации, позволяющие свести задачу к решению дифференциальных уравнений в частных производных или к системе алгебраических уравнений . Сущность такого подхода в физическом смысле соответствует замене систем с бесконечным количеством степеней свободы системой c конечным числом степеней свободы, эквивалентной первой в энергетическом смысле.

1.3.3. Математическая сущность подхода к расчету конструкций на основе идеализации континуальной среды дискретными элементами, названного методом конечных элементов - МКЭ обоснована заменой системы дифференциальных уравнений системой алгебраических, имеющих каноническую форму (структура инвариантна по отношению к конкретному виду конструкций), в матричной форме записываемую в виде:

АΧ = Р + F , (1)

где A - матрица коэффициентов системы, зависящая от параметров описания системы; Р - матрица, зависящая от параметров описания воздействий на систему; X - матрица неизвестных, зависящая от параметров поведения системы; F - матрица параметров начального состояния системы.

1.3.4. Наиболее распространенным МКЭ следует считать в форме метода перемещений, для которого матрица A имеет смысл матрицы реакции или жесткости системы, а Χ - матрица смещений, Р - матрица силовых воздействий, F - матрица начальных усилий.

Порядок системы уравнений (1) определяется числом степеней свободы расчетной модели. Применительно к методу перемещений ими станут возможные перемещения точек или сечений, называемых узлами, перемещения которых однозначно определяют расчетное деформированное и напряженное состояние системы, что достигается представлением континуальной среды системой элементов, имеющих конечные размеры и конечное число степеней свободы.

1.3.5. Конечные элементы (КЭ) соединяются между собой в точках или по линиям. Исходя из принципа виртуальной работы для каждого КЭ должно быть назначено возможное поле перемещений, описываемое аппроксимирующими полиномами-функциями формы . Напряженное состояние каждого КЭ - производная функции формы, или независимая функция.

1.3.6. Напряженное и деформированное состояние расчетной модели рассматривается как линейная комбинация состояний отдельных элементов системы, удовлетворяющая условиям совместности деформирования и равновесия.

Расчетная модель конструкции состоит из двух частей: расчетной схемы и набора аппроксимирующих функций. Расчетной схемой можно считать графическое или зрительное представление конструкции, составленное из набора расчетных элементов, связей между ними, и граничных условий закрепления.



1.3.7. Ввиду того, что уровень теоретических разработок в области расчета конструкций МКЭ достаточно высок и доведен до практического применения, все этапы расчета и связь между ними осуществляются программно.

При выборе программы (табл. 1) необходимо, в первую очередь, определить ее возможности с точки зрения аппроксимации заданного конструктивного решения соответствующими расчетными элементами. При расчете стержневых систем альтернативы, как правило, не возникает поверхностей или трехмерных тел - появляется необходимость точного описания поверхности и опорного контура, что достигается сочетанием набора КЭ, имеющих различную форму и количество контактирующих узлов или линий. В меньшей степени представляет интерес набор аппроксимирующих функций, положенных в основу алгоритма вычисления матрицы жесткости или напряжений КЭ. Однако для некоторых модификаций МКЭ, например метода пространственных конечных элементов - МПКЭ, положенного в основу программного комплекса КОНТУР , выбор и назначение функций формы осуществляется индивидуально, поскольку от этого зависит конечный результат.

1.3.8. Приступая к расчету конкретной конструкции, следует представить конструктивное решение в виде расчетной схемы, удовлетворяющей условиям и требованиям по разд. 2.1, закодировать в соответствии с инструкцией к программе всю информацию о расчетной модели и получить ряд числовых массивов, каждый из которых имеет определенное смысловое содержание:

1. Общее описание системы и задачи в целом

2. Структура системы

3. Геометрия системы

4. Граничные условия

5. Характеристики материалов

6. Данные о воздействиях

7. Данные для обработки результатов.

Кроме того, может привлекаться служебная и вспомогательная информация, способствующая организации процесса обработки и счета, а также контроля исходных данных. Содержание информации может быть избыточным, но непротиворечивым. В случаях, когда это возможно, программными средствами организуется логический и смысловой контроль исходной информации.

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

«Ижевский государственный технический университет» (ИжГТУ)

Кафедра «Промышленное и гражданское строительство»

Математическое моделирование в строительстве

Учебно-методическое пособие

УДК 69-50 (07)

Рецензент:

д.э.н., профессор Грахов В.П.

Составитель:

Математическое моделирование в строительстве. Учебно-методическое пособие / Сост. Иванова С.С. – Ижевск: Изд-во ИжГТУ, 2012. – 100 с.

Цель данного учебного пособия – ознакомить в очень сжатой и простой форме студентов строительных ВУЗов и факультетов с арсеналом основных задач, стоящих перед строителями, а также методамии моделями, способствующими прогрессу проектирования, организации и управления строительством и нашедшими широкое применение и повседневной практике.

УДК 69-50 (07)

 Иванова С.С 2012

 Издательство ИжГТУ, 2012

Введение

    Обзор применения моделей в экономике

    1. Исторический обзор

      Развитие моделирования в России

    Основные виды задач, решаемых при организации, планировании и управлении строительством

    1. Задачи распределения

      Задачи замены

      Задачи поиска

      Задачи массового обслуживания или задачи очередей

      Задачи управления запасами (создание и хранение)

      Задачи теории расписаний

    Моделирование в строительстве

    1. Основные положения

      Виды экономико-математических моделей в области организации, планирования и управления строительством

      1. Модели линейного программирования

        Нелинейные модели

        Модели динамического программирования

        Оптимизационные модели (постановка задачи оптимизации)

        Модели управления запасами

        Целочисленные модели

        Цифровое моделирование (метод перебора)

        Имитационные модели

        Вероятностно - статистические модели

        Модели теории игр

        Модели итеративного агрегирования

        Организационно-технологические модели

        Графические модели

        Сетевые модели

    Организационное моделирование систем управления строительством

    1. Основные направления моделирования систем управления строительством

      Аспекты организационно-управленческих систем (моделей)

      Деление организационно-управленческие моделей на группы

      1. Модели первой группы

        Модели второй группы

    2. Виды моделей первой группы

      1. Модели принятия решений

        Информационные модели коммуникационной сети

        Компактные информационные модели

        Интегрированные информационно-функциональные модели

      Виды моделей второй группы

      1. Модели организационно-технологических связей

        Модель организационно-управленческих связей

        Модель факторного статистического анализа управленческих связей

        Детерминированные функциональные модели

        Организационные модели массового обслуживания

        Организационно-информационные модели

        Основные этапы и принципы моделирования

    Методы корреляционно-регрессивного анализа зависимости между факторами, включаемые в экономико-математические модели

    1. Виды корреляционно-регрессивного анализа

      Требования к факторам, включаемым в модель

      Парный корреляционно-регрессивный анализ

      Множественный корреляционный анализ

Излагаются подходы в применении математики к решению практических, инженерных задач. Эти подходы в последние десятилетия приобретают явные черты технологии, как правило, ориентированной на использование компьютеров. И в настоящей книге рассматриваются поэтапные действия при математическом моделировании, от постановки практической задачи, до истолкования результатов ее решения, полученных математическим путем. Выбраны традиционные инженерные области математических приложений, наиболее востребованных в строительной практике: задачи теоретической механики и механики деформируемого твердого тела, задачи теплопроводности, механики жидкости и некоторые простые технологические и экономические задачи. Книга написана для студентов технических ВУЗов как учебное пособие по курсу «Математическое моделирование», а так же для изучения других дисциплин, излагающих применение аналитических и вычислительных математических методов при решении прикладных инженерных задач.

На нашем сайте вы можете скачать книгу "Математическое моделирование в строительстве" В. Н. Сидоров бесплатно и без регистрации в формате fb2, rtf, epub, pdf, txt, читать книгу онлайн или купить книгу в интернет-магазине.

, Расчет тусы на Даче Ивана в День России.pdf , сравнительная характеристика зон россии.docx , Министерство образования и науки России.docx .


Введение

  1. Обзор применения моделей в экономике

    1. Исторический обзор

    2. Развитие моделирования в России

  2. Основные виды задач, решаемых при организации, планировании и управлении строительством

    1. Задачи распределения

    2. Задачи замены

    3. Задачи поиска

    4. Задачи массового обслуживания или задачи очередей

    5. Задачи управления запасами (создание и хранение)

    6. Задачи теории расписаний

  3. Моделирование в строительстве

    1. Основные положения

    2. Виды экономико-математических моделей в области организации, планирования и управления строительством

      1. Модели линейного программирования

      2. Нелинейные модели

      3. Модели динамического программирования

      4. Оптимизационные модели (постановка задачи оптимизации)

      5. Модели управления запасами

      6. Целочисленные модели

      7. Цифровое моделирование (метод перебора)

      8. Имитационные модели

      9. Вероятностно - статистические модели

      10. Модели теории игр

      11. Модели итеративного агрегирования

      12. Организационно-технологические модели

      13. Графические модели

      14. Сетевые модели

  4. Организационное моделирование систем управления строительством

    1. Основные направления моделирования систем управления строительством

    2. Аспекты организационно-управленческих систем (моделей)

    3. Деление организационно-управленческие моделей на группы

      1. Модели первой группы

      2. Модели второй группы

    4. Виды моделей первой группы

      1. Модели принятия решений

      2. Информационные модели коммуникационной сети

      3. Компактные информационные модели

      4. Интегрированные информационно-функциональные модели

    5. Виды моделей второй группы

      1. Модели организационно-технологических связей

      2. Модель организационно-управленческих связей

      3. Модель факторного статистического анализа управленческих связей

      4. Детерминированные функциональные модели

      5. Организационные модели массового обслуживания

      6. Организационно-информационные модели

      7. Основные этапы и принципы моделирования

  5. Методы корреляционно-регрессивного анализа зависимости между факторами, включаемые в экономико-математические модели

    1. Виды корреляционно-регрессивного анализа

    2. Требования к факторам, включаемым в модель

    3. Парный корреляционно-регрессивный анализ

    4. Множественный корреляционный анализ

ВВЕДЕНИЕ


Современное строительство - это очень сложная система, в деятельности которой принимает большое количество участников: заказчик, генподрядные и субподрядные строительно-монтажные и специализированные организации; коммерческие банки и финансовые органы и организации ; проектные, а нередко и научно-исследовательские институты; поставщики строительных материалов, конструкций, деталей и полуфабрикатов, технологического оборудования; организации и органы, осуществляющие различные виды контроля и надзора за строительством; подразделения, эксплуатирующие строительную технику и механизмы, транспортные средства и т.д.

Для того, чтобы построить объект, необходимо организовать согласованную работу всех участников строительства.

Строительство протекает в непрерывно меняющихся условиях. Элементы такого процесса связаны между собой и взаимно влияют друг на друга, что усложняет анализ и поиск оптимальных решений.

На стадии проектирования строительной, любой другой производственной системы, устанавливаются ее основные технико-экономические параметры, организационно-управленческая структура, ставится задача определения состава и объема ресурсов - основных фондов , оборотных средств, потребности в инженерных, рабочих кадрах и т.д.

Чтобы вся система строительства действовала целесообразно, эффективно использовала ресурсы, т.е. выдавала готовую продукцию - здания, сооружения, инженерные коммуникации или их комплексы в заданные сроки, высокого качества и с наименьшими затратами трудовых, финансовых, материальных и энергетических ресурсов, надо уметь грамотно, с научной точки зрения, осуществлять анализ всех аспектов ее функционирования, находить наилучшие варианты решений, обеспечивающих ее эффективную и надежную конкурентоспособность на рынке строительных услуг.

В ходе поиска и анализа возможных решений по созданию оптимальной структуры предприятия , организации строительного производства и т.д. всегда появляется желание (требуется) отобрать лучший (оптимальный) вариант. Для этой цели приходится использовать математические расчеты, логические схемы (представления) процесса строительства объекта, выраженные в виде цифр, графиков, таблиц и т.д. - другими словами, представлять строительство в виде модели, используя для этого методологию теории моделирования.

В основе любой модели лежат законы сохранения. Они связывают между собой изменение фазовых состояний системы и внешние силы, действующие на нее.

Любое описание системы, объекта (строительного предприятия, процесса возведения здания и т.д.) начинается с представления об их состоянии в данный момент, называемом фазовым.

Успех исследования, анализа, прогнозирования поведения строительной системы в будущем, т.е. появления желаемых результатов ее функционирования, во многом зависит от того, насколько точно исследователь "угадает" те фазовые переменные, которые определяют поведение системы. Заложив эти переменные в некоторое математическое описание (модель) этой системы для анализа и прогнозирования ее поведения в будущем , можно использовать достаточно обширный и хорошо разработанный арсенал математических методов, электронно-вычислительную технику.

Описание системы на языке математики называется математической моделью, а описание экономической системы – экономико-математической моделью.

Многочисленные виды моделей нашли широкое применение для предварительного анализа, планирования и поиска эффективных форм организации, планирования и управления строительством.

Цель данного учебного пособия – ознакомить в очень сжатой и простой форме студентов строительных ВУЗов и факультетов с арсеналом основных задач, стоящих перед строителями, а также методами и моделями, способствующими прогрессу проектирования, организации и управления строительством и нашедшими широкое применение и повседневной практике.

Мы считаем, что каждый инженер, менеджер, работающий в сфере строительства - на возведении конкретного объекта, в проектном или научно-исследовательском институте, должен иметь представление об основных классах моделей, их возможностях и областях применения

Так как формулировка любой задачи, включая алгоритм ее решения, является в некотором смысле своеобразной моделью и более того, создание любой модели начинается с постановки задачи, мы сочли возможным начать тему моделирования с перечня основных задач, стоящих перед строителями.

Сами математические методы не являются объектом рассмотрения в данном учебном пособии, а конкретные модели и задачи приводятся с учетом их значимости и частоты применения в практике организации , планирования и управления строительством.

В случае создания модели сложных строительных объектов к процессу моделирования и анализа моделей привлекаются программисты, математики, инженеры-системотехники, технологи, психологи, экономисты, менеджеры и другие специалисты, а также используются электронно-вычислительная техника.

Похожие статьи

© 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.