Портальный кран Ganz (Ганц). Плавучие краны (плавкраны) Уникальные плавучие краны

Портальный кран «Ганц » производился венгерским судо-краностроительным заводом «Hanz »(Budapest ). Считается одним из лучших и надёжных кранов, благодаря продуманным конструкторским решения для погрузки/разгрузки грузов в порту и на промышленных складах.Кран отвечает всем международным стандартам качества.

Особенности конструкции крана

  • На кранах фирмы Hanz присутствует 2 электродвигателя применяемые на механизмах подъема груза, закрытия грейфера и передвижения.
  • Также 1 электродвигатель устновлены на механизме поворота и изменения вылета стрелы. Электродвигатели запитываются от переменного напряжения 380 В.
  • На цепи управления устанавливается напряжение 110В. Механизмы поворота перемещаются вертикально, механизмы передвижения — горизонтально.
  • Управление электроприводами механизмов крана, осуществляется с помощью магнитного контроллера. Для управления работой грейферных лебёдок, используется специальное дифференциальное устройство.
    На всех электродвигателях Hanz, имеются плавкие предохранители для защиты от короткого замыкания. На двигателях установлены 2 типа защиты — общая и индивидуальная. На механизме подъема груза и изменения вылета стрелы имеются специальные выключатели, которые применяются для ограничения движения грузозахватного механизма и вылета стрелы.

Преимущества портального крана Ганц

ъ

  • Высокий уровень КПД.
  • Возможность работать со штучными грузами (при помощи крюка) или насыпными (используя грейфер, что очень удобно и экономически выгодно).
  • Отличается повышенной грузоподъемностью.
  • Соответствует техническим регламентам безопасности.
  • Оснащен системой безопасности, а также защитой и контролем уровня нагрузок в процессе грузоподъемных работ.
  • Просторная кабина оператора дает максимальный обзор машинисту, а также повышает уровень комфорта и защищенности.
  • Для экономии электрической энергии, оборудование оснащено универсальной системой рекуперации, что позволяет вернуть неиспользованное электричество. Такая схема не предусматривает торможение отдельных элементов и способствует увеличению срока эксплуатации портального крана.

Недостатки

  • Жесткая привязку к рельсам, вследствие чего перемещать грузы по всей территории объекта не представляется возможным.
  • Сложность и высокая цена монтажа затрудняет применение оборудования на временных объектах.

  • Грузоподъёмность 16-32 т (зависит от вылета стрелы)
  • Длина колеи портала — 10,7 м
  • Вылет стрелы — 20-32 м
  • Тип грузозахвата: крюк или грейфер.
  • Стрела прямого исполнения.
  • Масса крана — 192,1 т.

Запчасти к портальному крану Ганц

Кран оборудован двумя пультами управления, на каждом из которых установлен однорукояточный командоаппарат, что позволяет управлять всеми основными электроприводами крана с помощью только двух рукояток, а это в свою очередь увеличивает производительность крана и снижает утомляемость крановщика. Правая рукоятка предназначена для управления двигателями механизма подъема, а левая- для поворота и изменения вылета стрелы. Командоаппарат выполнен с самовозвратной рукояткой, имеющей одно центральное (нулевое) и восемь рабочих положений. Направление перемещения рукоятки в рабочие положения показано на рис. 2.12.

В качестве коммутационных элементов в конструкции командоаппарата (рис. 2.13) применяются блок-контактные мостики 9, укрепленные на кронштейнах 7 контакторов типа КТП6000. Каждый мостик имеет четыре контакта (два замыкающих и два размыкающих).








При работе замыкающей лебедки на подъем (зачерпывание груза) скалка 8 приводится во вращение от лебедки и вызывает вращение гайки 5, которая передвигается по винту 7 и давит на ролик 4. Под воздействием этого усилия ползун 2 передвигается по своей направляющей и регулирующими болтами воздействует на контактную группу /, включая при этом поддерживающую лебедку на подъем закрытого грейфера. При работе замыкающей лебедки на спуск (раскрытие грейфера) гайка 5 перемещается по винту 7 в противоположном направлении, при этом ползун 2 передвигается также в другую сторону и толкатель перестает воздействовать на контактную группу. Гайка 5 при этом, перейдя в другое крайнее положение, переместит ползун 2, взаимодействующий с контактной группой 3, и отключит замыкающую лебедку.

При работе двумя лебедками (подъем или спуск грейфера) скалка 8 и винт 7 вращаются в одном направлении с одинаковой частотой, поэтому гайка 5 также вращается вместе с винтом 7 в этом же направлении и с одинаковой частотой, не перемещаясь влево или вправо. Перемещение диска 6 вдоль продольной оси в этом случае не происходит.

Для подъема груза рукоятка командоаппарата S1 (рис. 2.16, в) правого пульта управления устанавливается в положение «По центру на себя». При этом замыкается контакт Sl.l(6) командоаппарата (рис. 2.16, а), получает питание катушка реле К21(6), включающего контакторы 1 КМ 11(8) и 2КМ11(9). Электродвигатели 1М1 (поддерживающий) и 2Ml (замыкающий) включаются на подъем. Одновременно с помощью контакторов 1КМ2 (15) и 2КМ2(20) получают питание электродвигатели гидротолкателей 1М2 и 2М2 тормозов поддерживающей и замыкающей лебедок и последние растормаживаются. С помощью реле времени КТ 1(23), КТ2(24) и контакторов 1КМ 13(21), 1 КМ 14(17), 1 КМ 15(12) и 2КМ13(22), 2КМ 14(18) с определенными выдержками времени шунтируются пусковые резисторы электродвигателей 1М1 и 2М1 и тем самым автоматически запускается электродвигатель. Электродвигатели разгоняются до полной частоты вращения и работают на ней, поднимая груз (грейфер).

Для спуска груза рукоятку командоаппарата S1 устанавливают в положение «По центру от себя». Замыкается контакт S 1.2(7), получают питание катушки К31(7), 1КМ12(11), 2КМ12(10), включая тем самым электродвигатели на спуск. Для получения пониженной скорости спуска груза крановщик замыкает кнопочный включатель SB5(14) на левом пульте управления. При этом получают питание реле К41(14), контактор КМ 13(13) и отключаются аппараты К31(7), 1 КМ 12(11), 2КМ 12(10), 1 КМ 13(21), 1 КМ 14(17), 2КМ 13(22), 2КМ 14(18). Электродвигатели отключаются от сети переменного тока и подключаются к источнику постоянного тока VD1 (выпрямительному преобразователю ВАС-600/300) и работают в режиме динамического торможения.

Для зачерпывания груза грейфером рукоятку командоаппарат S1 необходимо установить в положение «Влево на себя». При этом замыкается контакт Sl.l(6) и размыкаются контакты S1.5(ll), S1.6(12), получают питание катушки К21(6), 1 КМ 11(8), 2КМ 11(9) и оба электродвигателя включаются на подъем. При этом электродвигатель 2М1 замыкающей лебедки разгоняется до полной частоты вращения и закрывает грейфер. Электродвигатель 1М1 поддерживающей лебедки работает на подъем с полностью включенными резисторами в цепи ротора, так как контакты S1.6(12), 1SQ4.1(2), КТЗ(12) разомкнуты и контактор 1 КМ 15(12) не срабатывает. Поддерживающий двигатель развивает при этом небольшой момент, необходимый для выбирания слабины поддерживающего каната, но не мешающей углублению грейфера в сыпучем грузе.

При полном закрытии грейфера замыкается контакт дифференциального устройства 1SQ4.1(2) и размыкается 1SQ4.2(19). В результате теряют питание катушки 2КМ 14(18) и 2КМ13(22), в цепь ротора замыкающего электродвигателя 2М1 вводятся все ступени резисторов 2R1, 2R2 и 2R3 и его частота вращения снижается. Контакт 1SQ4.1(2) включает реле времени КТЗ(2), которое своим контактом КТЗ(12) обеспечивает питание катушки контактора 1КМ15(12). Ступень резисторов 1R1, 1R2, 1R3 (в роторе поддерживающего двигателя), имеющая большое сопротивление, выключается, реле КТ2(24) срабатывает, так как замкнуты контакты 1КМ14.1(24) и2КМ14.1(24). Вдальнейшем происходит синхронный разгон обоих двигателей в функции времени реле КТ2. Синхронность разгона обеспечивает равномерность распределения нагрузки между двигателями при подъеме загруженного грейфера. Реле КТЗ с пневматическим замедлителем расположено в кабине крановщика. Это позволяет регулировать выдержку времени замыкания контакта КТЗ(12) и изменять момент времени начала разгона поддерживающего двигателя в зависимости от условий работы (например, рода груза) и от степени нарушения регулировки дифференциального устройства.

Для раскрытия грейфера рукоятка командоаппарата S1 устанавливается в положение «Влево от себя», при этом замыкается контакт S1.2(7) и размыкаются контакты S 1.5(11), S1.6(12). Электродвигатель 2М1 замыкающей лебедки, включаясь в сторону спуска, раскрывает грейфер. Электродвигатель поддерживающей лебедки в этом случае не включается, оставаясь заторможенным. По кончании раскрытия грейфера размыкается выключатель «Открытие грейфера» 2SQ4(10) дифференциального устройства, электродвигатель 2М1 замыкающей лебедки отключается от сети и затормаживается.

В системе управления предусмотрена также операция закрытия грейфера в воздухе. Для выполнения этой операции рукоятку командоаппарата S1 необходимо установить в положение «Влево на себя», одновременно нажатием ножной педали разомкнуть SB(8).



В процессе выгрузки сыпучего груза из грузового трюма судна необходимо изменять положение грейфера в пространстве относительно вертикальной оси во избежание задевания его об ограждения грузового трюма и для обеспечения точной посадки грейфера в заданный район грузового трюма. Для этих целей на кране предусмотрен механизм разворота грейфера, позволяющий вращать грейфер с помощью специальных оттяжных тросов вокруг вертикальной оси на угол 50- 60° в ту или иную сторону.

Грейфер в процессе работы разворачивается при включении электродвигателя 5М1 специального механизма разворота грейфера. Управляют двигателем с помощью кнопочных выключателей 5SB1(26, 27) и 5SB2(26, 27).

Для защиты механизма и металлоконструкций от перегрузок на кране устанавливается ограничитель грузоподъемности, регулирующий натяжение канатов. При превышении допустимой нагрузки размыкается его контакт SQ4(25), отключается реле К51(25), контакт К51.1(6) размыкается и двигатели 1М1, 2М1, включенные крановщиком на «Подъем», автоматически отключаются. При срабатывании ограничителя грузоподъемности возможен только спуск груза.

Для предотвращения отключения электродвигателей при кратковременных динамических перегрузках механизма подъема в составе ограничителя грузоподъемности имеется масляный демпфер, который создает выдержку времени срабатывания конечного выключателя.

Защита металлоконструкций крана от ветровых перегрузок осуществляется с помощью анемометра HV, отключающего питание цепей управления электродвигателями крановых механизмов при скорости ветра выше допустимой. Если при таком ветре необходимо кратковременно включить какой-либо механизм, например опустить ранее поднятый груз, то нажатием кнопки замыкается контакт SB3(4) на левом пульте управления. Контакт анемометра HV5 при этом шунтируется и работа электроприводов становится возможна.

Двигатели 1МЗ и 2МЗ (см. рис. 2.16, а) служат для вращения вентиляторов независимого охлаждения основных двигателей 1М1 и 2М1.

Электрическая схема механизма поворота (рис. 2.17). Привод механизма поворота плавкрана осуществляется электродвигателем ЧМТН280М10 мощностью 60 кВт, с частотой вращения 570 об/мин при ПВ = 40 %.

Для получения пониженной частоты вращения электродвигателя поворота Ml необходимо нажать кнопочный выключатель, замкнув контакты SB(17) (рис. 2.17, б). При этом получает питание реле КТ2(18), которое контактом КТ2.1(13) отключает катушку контактора КМ 15(13). Затем обесточиваются катушки контакторов КМ 14(14) и КМ 15(13) и в роторную цепь электродвигателя вводятся резисторы, снижающие его частоту вращения.


Способ торможения электродвигателя зависит от его начальной частоты вращения и действий крановщика и автоматически выбирается с помощью реле KV1(21) и KV2(22) (рис. 2.17, а). Эти реле подключаются к ротору двигателя через выпрямитель VD3. В начале пуска двигателя срабатывает реле KV1, получая питание через контакт реле времени КТ6.Ц21). После срабатывания контактора КМ 16 реле КТ6(2) потеряет питание и последовательно с катушкой реле будет включен резистор R6(21). Включение этого резистора приведет к тому, что при частоте вращения ротора двигателя 180 об/мин реле KV1 отпустит свой якорь. Реле KV2 срабатывает только при попытке резкого реверсирования двигателя, т. е. при скольжении s>»l.

1. Электродвигатель Ml не разогнался до частоты вращения 180 об/мин. Якорь реле KV1(21) притянут. Для торможения рукоятку 52 устанавливают в центральное положение и нажимают ножную педаль, замыкающую при этом контакт SB5.1(6) и размыкающую контакт SB5.2(7). В результате получает питание катушка реле К3(6) и обесточивается катушка контактора КМ2(10) электродвигателя М2 гидротолкателя тормоза поворота. Электродвигатель М2 гидротолкателя останавливается и происходит торможение механическим тормозом. Контакты S3.1(10) и S3.2(3) относятся к выключателю S3, предназначенному для экстренного торможения электропривода в аварийных ситуациях (при нормальных условиях контакты замкнуты).

2. Электродвигатель Ml разогнался до частоты вращения свыше 180 об/мин, в результате чего отпадает якорь реле KV1(21). При постановке оператором рукоятки командоаппарата 52 в центральное положение электродвигатель Ml отключается от сети. При нажатии на педаль торможения SB5.1(6) замыкается и через контакт KV 1.2(6) получает питание катушка реле К4(7), которое своим контактом К4.3(9) включает контактор динамического торможения КМ17(9). Обмотки статора электродвигателя Ml подключаются к источнику постоянного тока. Одновременно контакт К4.5(1) обесточивает катушку реле времени КТ5(1). Контакт КТ5.2(9) с выдержкой времени 4,5 с отключает катушки контакторов КМ 17(9) и КМ2(10). Динамическое торможение прекращается и срабатывает механический тормоз.

3. При резкой перестановке рукоятки командоаппарата S2 из положения, например, «Поворот вправо» и положение «Поворот влево» (или наоборот) при ненажатой ножной педали SB5 поле двигателя реверсируется, и так как в этом случае скольжение s > 1, то срабатывает реле КV2(22). Контактом KV2.3(21) размыкается цепь питания катушки реле KV1(21). Контакт KV2.1(7) включает катушку реле К4(7). Контакт К4.4(3) этого реле отключает катушку контактора КМ 11(3) или КМ 12(4) (в зависимости от направления вращения электродвигателя Ml). Электродвигатель Ml отключается от сети и якорь реле KV2(22) отпадает. Размыкание контакта KV2.1(7) не приводит к отключению катушки К4, так как контакт К4.2(8) замкнут.

Далее, как и во втором режиме, в течение 4,5 с происходит динамиче. ское торможение двигателя. По истечении этого времени отключаются катушки КМ17(9), К4(7). На некоторое время обесточивается также катушка контактора КМ2, что может вызвать подтормаживание механическим тормозом. Через размыкающий контакт К4.5(1) катушка реле КТ5(1) вновь получает питание, однако контактор КМ17(9) не срабатывает, так как контакт К4.3(9) разомкнут. Контактом К4.4(3) замыкается цепь питания катушек КМ 11(3) или КМ 12(4) и двигатель разгоняется в другую сторону. Применение такого режима торможения обеспечивает снижение механических нагрузок на металлоконструкции крана.

Электрогидравлический привод механизма изменения вылета стрелы. Привод механизма изменения вылета стрелы состоит из силового гидроцилиндра, корпус и шток которого шарнирно соединены соответственно с кронштейном рамы поворотной части крана и рычагом противовеса. Подача рабочей жидкости в полости гидроцилиндра из гидробака осуществляется с помощью гидронасоса аксиально-поршневого типа, приводимого во вращение электродвигателем Ml (рис. 2.18). Подача насоса регулируется изменением наклона его корпуса с помощью специального управляющего цилиндра, работающего над небольшим давлением рабочей жидкости. При вертикальном положении корпуса подача насоса наименьшая (остаточная подача). Управление подачей рабочей жидкости в гидроцилиндр осуществляется электромагнитами YА 1(16), YA2(17), YА3(18) гидрораспределителей. Для закачки рабочей жидкости в масляный бак гидросистемы предусмотрен насос закачки, приводимый во вращение электродвигателем М2. Электрогидравлический привод механизма изменения вылета управляется с левого пульта управления командоаппаратом S2 (рис. 2.19).

В положении рукоятки «По центру на себя» замкнут контакт командоконтроллера S2.4 и срабатывает реле К4(5). Электромагнит YА3(18) включает сервопривод, поворачивающий корпус гидронасоса в рабочее (наклонное) положение. Одновременно сработает реле К6(4), а затем и электромагнит YА2(17) гидрораспределителя, открывающий подачу рабочей жидкости в верхнюю полость гидроцилиндра и обеспечивающий свободный ее выход из нижней полости. В этом случае происходит уменьшение вылета стрелы на номинальной скорости. Механизм выключается при перестановке рукоятки командоконтроллера S2 в центральное положение, при котором размыкается контакт S2.4 и отключается электромагнит YАЗ. Корпус гидронасоса начинает возвращаться в вертикальное положение. Давление в гидросистеме падает, а при достижении вертикального положения корпуса размыкается конечный выключатель SQ14(3). Реле К6(4) Способ торможения электродвигателя зависит от его начальной частоты вращения и действий крановщика и автоматически выбирается с помощью реле KV 1(21) и KV2(22) (рис. 2.17, а). Эти реле подключаются к ротору двигателя через выпрямитель VD3. В начале пуска двигателя срабатывает реле KV1, получая питание через контакт реле времени КТ6.1(21). После срабатывания контактора КМ16 реле КТ6(2) потеряет питание и последовательно с катушкой реле будет включен резистор R6(21). Включение этого резистора приведет к тому, что при частоте вращения ротора двигателя 180 об/мин реле KV 1 отпустит свой якорь. Реле KV2 срабатывает только при попытке резкого реверсирования двигателя, т. е. при скольжении s>l.

На кране предусмотрены три режима торможения механизма поворота, перечисленные ниже.

1. Электродвигатель Ml не разогнался до частоты вращения 180 об/мин. Якорь реле KV1(21) притянут. Для торможения рукоятку S2 устанавливают в центральное положение и нажимают ножную педаль, замыкающую при этом контакт SB5.1(6) и размыкающую контакт SB5.2(7). В результате получает питание катушка реле К3(6) и обесточивается катушка контактора КМ2(10) электродвигателя М2 гидротолкателя тормоза поворота. Электродвигатель М2 гидротолкателя останавливается и происходит торможение механическим тормозом. Контакты S3.1(10) и S3.2(3) относятся к выключателю S3, предназначенному для экстренного торможения электропривода в аварийных ситуациях (при нормальных условиях контакты замкнуты).

2. Электродвигатель Ml разогнался до частоты вращения свыше 180 об/мин, в результате чего отпадает якорь реле KV1(21). При постановке оператором рукоятки командоаппарата S2 в центральное положение электродвигатель Ml отключается от сети. При нажатии на педаль торможения SB5.1(6) замыкается и через контакт KV1.2(6) получает питание катушка реле К4(7), которое своим контактом К4.3(9) включает контактор динамического торможения КМ 17(9). Обмотки статора электродвигателя Ml подключаются к источнику постоянного тока. Одновременно контакт К4.5(1) обесточивает катушку реле времени КТ5(1). Контакт КТ5.2(9) с выдержкой времени 4,5 с отключает катушки контакторов КМ17(9) и КМ2(10). Динамическое торможение прекращается и срабатывает механический тормоз.

3. При резкой перестановке рукоятки командоаппарата S2 из положения, например, «Поворот вправо» и положение «Поворот влево» (или наоборот) при ненажатой ножной педали SB5 поле двигателя реверсируется, и так как в этом случае скольжение s > 1, то срабатывает реле KV2(22). Контактом KV2.3(21) размыкается цепь питания катушки реле KV1(21). Контакт KV2.1(7) включает катушку реле К4(7). Контакт К4.4(3) этого реле отключает катушку контактора КМ11(3) или КМ12(4) (в зависимости от направления вращения электродвигателя Ml). Электродвигатель Ml отключается от сети и якорь реле KV2(22) отпадает. Размыкание контакта KV2.HJ) не приводит к отключению катушки К4, так как контакт К4.2(8) замкнут.

Далее, как и во втором режиме, в течение 4,5 с происходит динамическое торможение двигателя. По истечении этого времени отключаются катушки КМ17(9), К4(7). На некоторое время обесточивается также катушка контактора КМ2, что может вызвать подтормаживание механическим тормозом. Через размыкающий контакт К4.5(1) катушка реле КТ5(1) вновь получает питание, однако контактор КМ 17(9) не срабатывает, так как контакт К4.3(9) разомкнут. Контактом К4.4(3) замыкается цепь питания катушек КМ 11(3) или КМ 12(4) и двигатель разгоняется в другую сторону. Применение такого режима торможения обеспечивает снижение механических нагрузок на металлоконструкции крана.

Контакт К51.2(3) входит в состав ограничителя грузоподъемности и замкнут, если масса груза не более номинальной.

Электрогидравлический привод механизма изменения вылета стрелы. Привод механизма изменения вылета стрелы состоит из силового гидроцилиндра, корпус и шток которого шарнирно соединены соответственно с кронштейном рамы поворотной части крана и рычагом противовеса. Подача рабочей жидкости в полости гидроцилиндра из гидробака осуществляется с помощью гидронасоса аксиально-поршневого типа, приводимого во вращение электродвигателем Ml (рис. 2.18). Подача насоса регулируется изменением наклона его корпуса с помощью специального управляющего цилиндра, работающего над небольшим давлением рабочей жидкости. При вертикальном положении корпуса подача насоса наименьшая (остаточная подача). Управление подачей рабочей жидкости в гидроцилиндр осуществляется электромагнитами YА 1(16), YA2(17), YA3(18) гидрораспределителей. Для закачки рабочей жидкости в масляный бак гидросистемы предусмотрен насос закачки, приводимый во вращение электродвигателем М2. Электрогидравлический привод механизма изменения вылета управляется с левого пульта управления командоаппаратом S2 (рис. 2.19).

Пуск электродвигателя Ml гидронасоса происходит от замыкания контактов SB2.1(7).

В положении рукоятки «По центру на себя» замкнут контакт командоконтроллера S2.4 и срабатывает реле К4(5). Электромагнит YA3(18) включает сервопривод, поворачивающий корпус гидронасоса в рабочее (наклонное) положение. Одновременно сработает реле К6(4), а затем и электромагнит YА2(17) гидрораспределителя, открывающий подачу рабочей жидкости в верхнюю полость гидроцилиндра и обеспечивающий свободный ее выход из нижней полости. В этом случае происходит уменьшение вылета стрелы на номинальной скорости. Механизм выключается при перестановке рукоятки командоконтроллера S2 в центральное положение, при котором размыкается контакт S2.4 и отключается электромагнит YАЗ. Корпус гидронасоса начинает возвращаться в вертикальное положение. Давление в гидросистеме падает, а при достижении вертикального положения корпуса размыкается конечный выключатель SQ14(3). Реле К6(4) теряет питание и отключает электромагнит YA2. Гидрораспределитель перекрывает поступление масла в верхнюю полость гидроцилиндра и слив из нижней полости. Механизм будет зафиксирован двухсторонней масляной подушкой.


Принятая последовательность выключения механизма предотвращает возникновение гидравлических ударов. При достижении минимального вылета размыкается конечный выключатель SQ12(6) и движение стрелы прекращается. Качающийся корпус гидронасоса возвращается в исходное положение и давление рабочей жидкости в гидросистеме падает до минимума.

Работа схемы управления при увеличении вылета стрелы аналогична рассмотренной (срабатывают реле КЗ и электромагнит УАЗ). Максимальный вылет стрелы ограничен конечным выключателем SQ11(1).

При буксировке крана на небольшие расстояния его стрела поднимается до минимально возможного вылета, и для предотвращения самопроизвольного перемещения противовес стрелы жестко крепится к раме машинной будки с помощью специального замка. В этом состоянии стрелы разомкнут контакт SQ10(1) и работа в сторону «Увеличение вылета» становится невозможной.

Для контроля температуры рабочей жидкости в гидросистеме предусмотрена установка датчика температуры SK(JO). При превышении температуры рабочей жидкости выше допустимой контакт SK(10) замыкается, получает питание катушка реле К 1(10), загорается сигнальная лампа HL2(14). Одновременно контакт К1-1(7) обесточивает катушку контактора КМ 1(7) и электродвигатель Ml гидронасоса отключается от сети.

Повышение (понижение) давления масла выше (ниже) допустимых норм приводит к замыканию контактов SPl(ll) или SP2(13) электро- контактного манометра. Реле К2 срабатывает и своим контактом К2.2(Л) разрывает цепь питания катушек К3(1), К5(2), К6(4), К4(5), делая невозможным включение гидропривода.

Уровень рабочей жидкости в гидробаке контролируется поплавковым датчиком уровня SL, который своим контактом SL.1(7) отключает катушку контактора КМ 1(7) при понижении уровня рабочей жидкости ниже нормы. При этом гаснет лампа HL3(15) и электродвигатель Ml гидронасоса отключается от сети. При превышении уровня размыкается контакт SL.2(9), отключая электродвигатель М2 насоса закачки масла в гидробак. Перед буксировкой плавкрана на большие расстояния его стрела должна быть уложена на малой скорости в походное положение (максимально возможный вылет). Для выполнения этой операции необходимо дополнительно воздействовать на кнопочные выключатели SB5 и SB1. Контакт SB5(18) отключит электромагнит УАЗ и корпус гидронасоса подачи останется в вертикальном положении, что обеспечит движение стрелы с малой скоростью. А контакт SB.1(1) зашунтирует конечный выключатель SQ11(1) максимально допустимого вылета стрелы.

Практикуемое в последние годы использование электропривода вместо традиционного электропривода обеспечивает следующие преимущества: существенно облегчается работа электродвигателя механизма Ml в связи с небольшой частотой его пусков; устраняется механический тормоз и редуктор; уменьшаются динамические нагрузки механизма изменения вылета стрелы.

Однако присущие гидросистеме протечки рабочей жидкости могут вызвать самопроизвольное движение стрелы (просадку) при неработающем механизме и требуют повышенного внимания со стороны обслуживающего персонала.

В январе 2018 года был согласовал проект переклассификации плавучего несамоходного крана «Ганц-207» на класс «X О-ПР 2,0», разработанный компанией ООО «Морской Инжиниринговый Центр СПб».

Рис. 1 Общий вид плавучего крана пр. 721/650

Несамоходный плавучий кран «Ганц-207» проекта 721/650 был построен на класс «О» в 1986 году в Будапеште. Плавучий кран предназначен для выгрузки и погрузки судов, для выполнения работ при береговом строительстве. Может применяться как для работы с гаком, так и с грейфером.

Табл.1 Основные характеристики судна после переклассификации

Характеристика

Значение

Название судна

”Ганц-207”

Класс РРР

X О-ПР 2,0

Регистровый номер

230672

Место и год постройки

1986г., ВНР;

Монтаж 1994г., п. Правдинск

Номер проекта

721/650

Длина наибольшая

32,22 м

Длина по КВЛ

32,0 м

Ширина наибольшая

15,82 м

Ширина расчетная

15,60 м

Высота борта на миделе

3,1 м

Осадка

1,7 м

Надводный борт

1,412 м

Экипаж

8 чел.

Валовая вместимость

489

Чистая вместимость

147

Мощность главных двигателей

1х500 кВт

Водоизмещение порожнем

591,0 т

Запасы

67,90 т

Грузоподъемность при любом вылете стрелы

16 т

Скорость подъема

50 м/мин

В рамках проекта проведен Анализа соответствия требованиям Правил для нового класса по всем элементам судна, подтверждено соответствие мореходных и прочностных характеристик более сложным условиям эксплуатации.

Для обеспечения прочности корпус плавучего крана «Ганц-207» был усилен.

Рис. 2 Конструктивный чертеж корпуса

Плавучий кран «Ганц-207» был приведен в соответствие с современными экологическими требованиями:

Оборудована система нефтесодержащих вод;

Оборудована система нефтяных остатков;

Модернизирована топливная и масленая системы;

В местах расположения устройств для приема и выдачи топлива установлено ограждение, обеспечивающее задержание возможных утечек нефти


Рис. 3 Конструктивный чертеж цистерны нефтесодержащих вод

Также «Ганц-207» был оснащен необходимым противопожарным, электро-, радио- и навигационным оборудованием и необходимыми коллективными спасательными средствами в соответствии с требованиями Правил для данного класса.

В результате реализации мероприятий по переклассификации, плавучий кран «Ганц-207» соответствует классу «X О-ПР 2,0», что позволяет эксплуатироваться не только на внутренних водных путях, но и в прибрежных морских зонах.

Плавучий кран - это грузоподъемный кран, установленный стационарно на специальном судне, как самоходном, так и не самоходном, и предназначенный для выполнения подъемно-перегрузочных работ.

2.1.1. Общие сведения

В отличие от других типов кранов, на плавучих - предусмотрены бытовые помещения для команды (постоянного экипажа), ремонтные и такелажные мастерские, столовые, дополнительное судовое оборудование, палубные механизмы , собственные силовые установки, позволяющие работать крану в автономном режиме вдали от берега. Механизмы плавучих кранов имеют, как правило, дизель-электрический привод. Возможно также питание электроэнергией с берега. В качестве движителей используются гребные винты или крыльчатые движители. Последние не требуют рулевого устройства и могут перемещать кран вперед, назад, вбок (лагом) или разворачивать на месте.

В зависимости от водных путей плавучие краны подведомственны Морскому регистру судоходства России или Российскому речному регистру .

В соответствии с требованиями Морского регистра плавучие краны должны быть оборудованы всеми устройствами, предусматриваемыми для судов, т.е. должны иметь привальные брусья (деревянные балки, выступающие вдоль наружной части надводного борта судна непрерывно или частями, предохраняющие обшивку бортов от ударов о другие судна и сооружения), шпили (судовые механизмы в виде вертикальных воротов для подъема и отдачи якорей, подъема тяжестей, тяги швартовов и др.), кнехты (парные тумбы с общей плитой на палубе судна, предназначенные для закрепления на них тросов), якоря и якорные лебедки, а также средства световой и звуковой сигнализации, радиосвязи, водоотливные насосы и спасательные средства. В процессе эксплуатации на плавучем кране должен быть запас пресной воды, продуктов питания, топлива и смазочных материалов по нормам на время автономного плавания. Основные требования, предъявляемые к понтонам плавучих кранов – прочность конструкции, плавучесть и остойчивость.

В случае транспортировки по внутренним водным путям габаритная высота крана в походном состоянии должна соответствовать ГОСТ 5534 и назначаться с учетом подмостных размеров и возможности прохода под воздушными линиями электропередач.

По назначению краны можно классифицировать следующим образом:

Перегрузочные краны (общего назначения), предназначенные для массовых перегрузочных работ (их описание представлено в работах ). Согласно ГОСТ 5534, грузоподъемность перегрузочных плавучих кранов составляет 5, 16 и 25 тонн, максимальный вылет 30…36 м, минимальный 9…11 м, высота подъема крюка над уровнем воды 18,5…25 м, глубина опускания ниже уровня воды (например, в трюм судна) - не менее 11…20 м (в зависимости от грузоподъемности), скорости подъема 1,17…1,0 м/с (70…45 м/мин), скорость изменения вылета 0,75…1,0 м/с (45…60 м/мин), частота вращения 0,02…0,03 с -1 (1,2…1,75 об/мин) . Это такие краны, как, например - «Ганц», производство Венгрии (рис. 2.1.), отечественные краны (рис. 2.2).

Краны специального назначения (большой грузоподъемности) - для перегрузки тяжеловесов, строительных, монтажных, судостроительных и аварийно-спасательных работ.

Плавучие краны, предназначенные для монтажных работ, используются при возведении гидротехнических сооружений, для работы на судостроительных и судоремонтных заводах.

Кран немецкой фирмы «Демаг» грузоподъемностью 350 тонн использовался при реконструкции ленинградских мостов, при монтаже
80-тонных портальных кранов, при переносе портальных кранов с одного района порта в другой и т.д.

Кран завода ПТО им. С. М. Кирова грузоподъемностью 250 тонн был изготовлен для монтажа нефтяных вышек на Каспийском море.

Краны «Черноморец» грузоподъемностью 100 тонн и «Богатырь» грузоподъемностью 300 тонн (рис. 2.3) удостоены Государственной премии СССР.

Рис. 2.2. Перегрузочные плавучие краны грузоподъемностью 5 тонн (а ) и 16 тонн (б ): 1 – грейфер на наибольшем вылете; 2 – хобот; 3 – стрела по-походному; 4 – упор; 5 – стрела по-рабочему; 6 – понтон; 7 – грейфер на наименьшем вылете; 8 – кабина; 9 – опорно-поворотное устройство; 10 – колонна; 11 – уравновешивающее устройство, совмещенное с механизмом изменения вылета; 12 – противовес

Рис. 2.3. Плавучий кран «Богатырь» грузоподъемностью 300 тонн (Севастопольский завод им. С. Орджоникидзе): 1 – понтон; 2 – стрела по-походному; 3 – подвеска вспомогательного подъема; 4 – подвеска главного подъема; 5 – стрела

Кран «Витязь» (рис. 2.4) грузоподъемностью 1600 тонн применяют при работе с тяжелыми грузами, например, при установке на опоры смонтированных на берегу конструкций моста через реку. Помимо главного подъема этот кран имеет вспомогательный подъем грузоподъемностью 200 тонн. Вылет главного подъема 12 м, вспомогательного 28,5 м. Имеются плавучие краны и большей грузоподъемности.

Специальные краны, выполняющие перегрузку тяжеловесов в портах, монтажные и строительные работы при постройке судов, судоремонте и строительстве ГЭС, аварийно-спасательные работы, имеют полноповоротные верхние строения. Грузоподъемность - от 60 (кран «Астрахань») до 500 тонн, например: «Черноморца» - 100 тонн, «Севастопольца» - 140 тонн (рис. 2.5), «Богатыря» - 300 тонн, «Богатыря-М» - 500 тонн. На рис. 2.6 представлены краны «Богатырь» с различными модификациями стрел и соответствующими графиками грузоподъемности, переменной по вылету.

Специализированные краны для судоподъемных и аварийно-спасательных работ и монтажа крупногабаритных тяжеловесных конструкций, как правило, неповоротные.

Рис. 2.5. Плавучий кран «Севастополец» грузоподъемностью 140 тонн (Севастопольский завод им. С. Орджоникидзе): 1 – понтон; 2 – стрела по-походному; 3 – стрела по-рабочему

а ) б ) в ) б ,в а б )

Рис. 2.6. Плавучие краны: а – «Богатырь»; б – «Богатырь-3» с дополнительной стрелой; в – «Богатырь-6» с удлиненной дополнительной стрелой; Q – допустимая грузоподъемность на вылете R ; Н – высота подъема

Примерами таких кранов могут служить: «Волгарь» - 1400 тонн; «Витязь» - 1600 тонн (рис. 2.4), подъем груза весом 1600 тонн производят с привлечением лебедки трех палубных талей, «Магнус» (Magnus, ФРГ) грузоподъемностью от 200 до 1600 тонн (рис. 2.7), «Балдер» (Balder, Голландия) грузоподъемностью от 2000 до 3000 тонн (рис. 2.8).

Нефтепромысловые. Крановые суда для снабжения морских нефтепромыслов и строительства нефте- и газопромысловых сооружений на шельфе обычно имеют поворотные верхние строения, значительный вылет и высоту подъема и способны обслуживать стационарные буровые платформы. К таким кранам относятся, например, «Якуб Кязимов» - грузоподъемностью 25 тонн (рис. 2.9), «Керр-оглы» - грузоподъемностью 250 тонн . В связи с освоением континентального шельфа отмечается тенденция к росту параметров кранов этой группы (грузоподъемности - до 2000…2500 тонн и более) .

Рис. 2.7. Плавучий кран «Магнус» грузоподъемностью 800 тонн (HDW, ФРГ): 1 – понтон; 2 – стрела по-походному; 3 – палубная лебедка; 4 – лебедка наклона гуська; 5 – подкос; 6 – стрела; 7 – гусек; 8 – подвеска главного подъема; 9 – подвеска вспомогательного подъема

Рис. 2.8. Плавучий кран «Балдер» грузоподъемностью 3000 тонн («Густо», Голландия – (а ) и график изменения допустимой грузоподъемности Q от вылета R (б )):
1 – понтон; 2 – поворотная платформа; 3 – стрела; I … IV – крюковые подвески

Рис. 2.9. Крановое судно «Якуб Кязимов»: 1 – понтон; 2 – стрела по-походному; 3 – уравнительный полиспаст; 4 – кабина; 5 – каркас поворотной части

В зависимости от мореходных качеств , краны можно классифицировать следующим образом:

1) портовые (для выполнения перегрузочных работ в портах и гаванях, закрытых водоемах и прибрежных морских (каботажные) и речных районах, на судостроительных и судоремонтных верфях);

2) мореходные (для работ в открытом море с возможностью длительных самостоятельных переходов).

Для отечественного краностроения характерно стремление к созданию универсальных кранов, а для зарубежного - узкоспециализированных кранов.

2.1.2. Устройство плавучих кранов

Плавучие краны состоят из верхнего строения (собственно крана) и понтона (специального или кранового судна).

Верхнее строение плавучего крана, кранового судна и т.п. – грузоподъемное сооружение, установленное на открытой палубе, рассчитанной на несение грузоподъемного устройства и груза.

Понтоны , подобно корпусам судов состоят из поперечных (шпангоутов и палубных бимсов) и продольных (киля и кильсонов) элементов, обшитых листовой сталью.

Шпангоут – криволинейная поперечная балка набора корпуса судна, обеспечивающая прочность и устойчивость бортов и днища.

Бимс – поперечная балка, связывающая правую и левую ветви шпангоута. На бимс настилают палубу.

Киль – продольная связь, устанавливаемая в диаметральной плоскости судна у днища, простирающаяся по всей его длине. Киль крупных и средних судов (внутренний вертикальный) представляет собой лист, установленный в диаметральной плоскости между настилом двойного дна и обшивкой днища. Для уменьшения качки устанавливают боковые кили нормально к наружной обшивке судна. Длина бокового киля составляет до 2 / 3 длины судна.

Кильсон – продольная связь на судах без двойного дна, устанавливаемая по днищу и соединяющая нижние части шпангоутов для совместной их работы.

По форме понтоны представляют собой параллелепипед с закругленными углами либо имеют корабельные обводы. Понтоны с прямоугольными углами имеют плоское дно и срез в кормовой (или носовой) части (рис. 2.10). Иногда кран монтируют на двух понтонах (кран-катамаран). В этих случаях каждых понтон имеет более или менее выраженный киль и форму, аналогичную форме корпусов обычных судов. Понтоны плавучих кранов делают иногда непотопляемыми, т.е. снабжают продольными и поперечными переборками. Для увеличения остойчивости плавучего крана, т.е. способности возвращаться из отклоненного положения в положение равновесия после снятия нагрузки, необходимо по возможности понизить его центр тяжести. Для этого следует избегать высоких надстроек, а жилые помещения для команды крана и склады помещать внутри понтона. На палубу выносят только рубку (кабину управления судном), камбуз (корабельную кухню) и столовую. Внутри понтона, вдоль его бортов, располагаются танки (цистерны) для дизельного топлива и пресной воды.

Плавучие краны могут быть самоходными и несамоходными. Если кран предназначен для обслуживания нескольких портов или для перемещения на значительные расстояния, то он должен быть самоходным. В этом случае применяют понтоны с корабельными обводами. Мореходные краны имеют понтоны с судовыми обводами, на ряде тяжелых кранов применены катамаранные понтоны («Кер-оглы» грузоподъемностью 250 тонн; кран фирмы «Вяртсиля», Финляндия, грузоподъемностью 1600 тонн и др.).

По конструкции верхнего строения плавучие краны можно классифицировать на неповоротные, полноповоротные и комбинированные.

Неповоротные (мачтовые, козловые, с качающимися (наклоняющимися) стрелами). Мачтовые краны (с неподвижными мачтами) имеют простую конструкцию и малую стоимость. Горизонтальное перемещение груза осуществляется при перемещении понтона, поэтому производительность таких кранов очень мала.

Рис. 2.10. Схема понтона плавучего крана

Для работы с тяжеловесами более пригодны плавучие краны с наклоняющимися стрелами. При переменном вылете их производительность больше, чем мачтовых. Эти краны имеют простую конструкцию, малую стоимость и большую грузоподъемность. Стрела крана состоит из двух стоек, сходящихся к вершине под острым углом, и имеет шарнирное закрепление в носовой части понтона. Подъем стрелы осуществляется жесткой штангой (гидравлическим цилиндром, зубчатой рейкой или винтовым устройством) или при помощи полиспастного механизма (например на кране «Витязь»). Стрелу в транспортном положении закрепляют на специальной опоре (рис. 2.3). Для выполнения этой операции используют стрелоподъемную и вспомогательную лебедки.

Плавучий козловой кран представляет собой обычный козловой кран, установленный на понтоне. Мост крана расположен вдоль продольной оси понтона, а его единственная консоль выступает за контуры понтона на расстояние, иногда называемое внешним вылетом. Внешний вылет обычно составляет 7…10 м. грузоподъемность плавучих козловых кранов достигает 500 тонн. Однако вследствие большой металлоемкости плавучие козловые краны в нашей стране не выпускают.

Полноповоротные (универсальные) краны бывают с поворотной платформой или колонной. В настоящее время широко распространены поворотные краны с наклоняющейся стрелой. Они наиболее производительны. Их стрелы не только наклоняются, но и вращаются вокруг вертикальной оси. Грузоподъемность поворотных кранов изменяется в широких пределах и может достигать сотен тонн.

К полноповоротным кранам относятся кран «Богатырь» грузоподъемностью 300 тонн и внешним вылетом 10,4 м при высоте подъема главного крюка (гака) над уровнем моря 40 м, а также морское транспортно-монтажное судно «Илья Муромец». Последнее имеет грузоподъемность 2×300 тонн на внешнем вылете 31 м. Высота кранового судна с поднятой стрелой 110 м. Эти краны способны совершать переходы по морю при шторме 6…7 баллов и ветре 9 баллов. Автономность плавания 20 суток. Скорость хода крана «Богатырь» 6 узлов, а кранового судна «Илья Муромец» 9 узлов. Оба судна оборудованы комплексом механизмов и приспособлений, обеспечивающих высокий уровень механизации основных и вспомогательных процессов. В транспортном положении стрелы обоих описанных судов укладывают на специальные опоры и закрепляют.

Комбинированные . К ним можно отнести, например, плавучие козловые краны, по мосту которых перемещается поворотный кран.

Преобладающий тип стрелового устройства плавучих кранов - прямая стрела с уравнительным полиспастом; реже применяют шарнирно-сочлененные стреловые устройства, однако их использование сопряжено с трудностями укладки по-походному.

Для исключения запрокидывания прямых стрел морских кранов при волнении, под действием сил инерции и ветра, а также при обрыве и сбросе груза стрелы оснащают предохранительными устройствами в виде ограничительных упоров или специальных систем уравновешивания . У кранов «Магнус» стрела с грузом удерживается жестким подкосом.

По мере развития конструкций стрел был осуществлен переход от решетчатых и безраскосных стрел к сплошностенным (коробчатым, реже - трубчатым) стрелам в балочном или вантовом исполнении. На кранах последних лет выпуска чаще применяют листовые коробчатые стрелы. Известны, однако, решетчатые стрелы некоторых зарубежных кранов очень большой грузоподъемности (кран «Балдер», см. рис. 2.8). При модернизации кранов базовые стрелы часто удлиняют дополнительными вантовыми стрелами (см. рис. 2.6), что позволяет значительно увеличить наибольшие вылет и высоту подъема и одновременно обеспечить широкую унификацию с базовой моделью.

Основные типы опорно-поворотных устройств плавучих кранов - поворотная и неповоротная колонна, многокатковый поворотный круг, опорно-поворотный круг в виде двухрядного роликового подшипника. Отмечается тенденция к применению опорно-поворотных кругов в виде роликовых подшипников на кранах грузоподъемностью до 500 тонн. На более тяжелых кранах пока используют многокатковые поворотные круги, ведутся работы по созданию для таких кранов сегментных роликовых подшипников .

Механизмы подъема, применяемые на плавучих кранах - грейферные лебедки с независимыми барабанами и дифференциальными переключателями. Согласно ГОСТ 5534, предусмотрена уменьшенная скорость посадки грейфера на груз, составляющая 20…30 % основной скорости. Возможна замена грейфера крюковой подвеской.

Механизмы поворота (один или два) чаще имеют цилиндроконические редукторы с многодисковыми муфтами предельного момента и открытую зубчатую или цевочную передачу.

Механизм изменения вылета - секторный с установкой секторов на рычаге противовеса или гидравлический с гидроцилиндром, соединенным с платформой, и штоком, соединенным с рычагом противовеса. Известны краны с винтовым механизмом изменения вылета . Конструкции механизмов изменения вылета представлены в разделе 1 «Портальные краны».

Плавучие перегрузочные грейферные краны в речных и морских портах эксплуатируют весьма интенсивно. Для механизмов подъема значения ПВ достигают 75…80 %, механизмов поворота - 75 %, механизмов изменения вылета - 50 %, число включений в час - 600 .

2.1.3. Особенности расчета

Геометрия понтона. При проектировании и расчете понтон рассматривают в трех взаимно перпендикулярных плоскостях (см. рис. 2.10). Основной плоскостью называется горизонтальная плоскость, касательная к днищу понтона. Одна из вертикальных плоскостей, так называемая диаметральная плоскость, проходит вдоль понтона и делит его на равные части. Линию пересечения основной и диаметральной плоскостей принимают за ось X . Другую вертикальную плоскость проводят через середину длины понтона и называют плоскостью мидель-шпангоута, или миделевой. Линию пересечения основной и миделевой плоскостей принимают за ось Y , а линию пересечения миделевой и диаметральной плоскостей – за ось Z .

Плоскость, параллельную плоскости миделя и проходящую через ось вращения поворотного крана, называют медиальной. Линии пересечения поверхности корпуса понтона с плоскостями, параллельными плоскости миделя, называют шпангоутами (так называют и поперечные элементы судна, образующие каркас его корпуса). Линии пересечения поверхности корпуса понтона с плоскостями, параллельными основной плоскости, называют ватерлиниями. Такое же название имеет след поверхности воды на корпусе понтона.

Так как понтон, находящийся на воде, может быть наклонен, то полученную при этом ватерлинию называют действующей. Плоскость действующей ватерлинии, непараллельная плоскостям остальных ватерлиний, делит понтон на две части: надводную и подводную. Ватерлиния, соответствующая положению на воде крана без груза, уравновешенного таким образом, что основная его плоскость параллельна поверхности воды, называется главной ватерлинией.

Наклон судна на нос или корму называют дифферентом, а наклон судна на правый или левый борт – креном. Угол ψ (см. рис. 2.10) между действующей и главной ватерлиниями в диаметральной плоскости называют углом дифферента, а угол θ между этими же линиями в плоскости миделя - углом крена. При дифференте на нос и при крене в сторону стрелы углы ψ и θ считаются положительными.

Длину L понтона измеряют обычно по главной ватерлинии, расчетную ширину B понтона - в наиболее широком месте понтона по ватерлинии, а расчетную высоту H борта - от основной плоскости до бортовой линии палубы (см. рис. 2.10). Расстояние от основной плоскости до действующей ватерлинии называют осадкой Т понтона, которая имеет разные значения у носа понтона Т H и у кормы Т K . Разность значений Т H – T К называется дифферентом. Разность между высотой и осадкой Н – T называют высотой f надводного борта. Если форма понтона не представляет собой параллелепипеда, т.е. имеет плавные обводы, то для расчетов составляют так называемый теоретический чертеж, определяющий внешнюю форму корпуса (несколько сечений по шпангоутам). При прямоугольных понтонах нет необходимости в составлении такого чертежа.

Объем V подводной части понтона называется объемным водоизмещением. Центр тяжести этого объема называется центром величины и обозначается ЦВ. Масса воды в объеме V называется массовым водоизмещением D.

Остойчивость плавучих кранов. Остойчивость - способность судна возвращаться в положение равновесия после прекращения действия сил, вызывающих его наклонение.

Особенности расчета остойчивости плавучих кранов в значительной степени сводятся к учету влияния крена и дифферента. Кран без груза должен иметь дифферент на корму, а с грузом - на нос. Если стрела расположена в медиальной плоскости без груза, кран должен иметь крен в сторону противовеса, а с грузом - в сторону груза. Изменение вылета за счет крена или дифферента может составить несколько метров. За расчетный вылет принимают вылет, который имеет кран при горизонтальном положении понтона.

Для крана с грузом поворотная часть крана с противовесом создает момент, который частично уравновешивает грузовой момент и называется уравновешивающим (см. рис. 2.10): M У = G K y K , где G K - вес верхнего строения; y K - расстояние от оси вращения крана до центра тяжести верхнего строения (с учетом противовесов).

Для кранов с подвижными противовесами уравновешивающий момент определяют как сумму моментов от весов верхнего строения и противовесов.

Грузовой момент M Г = GR ,где G - вес груза с крюковой подвеской; R - вылет стрелы. Отношение уравновешивающего момента к грузовому называется коэффициентом уравновешивания φ = М У / М Г .

Для определения кренящего и дифферентующего моментов рассмотрим рис. 2.11, на котором изображены понтон и стрела в плане. Вес поворотной части кранас грузом G K приложен на расстоянии e от оси O 1 вращения стрелы. Действие веса G K на плече e можно заменить действием вертикальной силы G K в точке O 1 и моментом G K e в плоскости стрелы. Вес понтона с балластом G 0 приложен в точке O 2 . Кроме того, на кран действует вертикальный момент от ветровой нагрузки, имеющий составляющие относительно соответствующих осей M ВХ и M ВY . Тогда кренящий момент определяется по зависимости вида M K = M X = G K e cos φ + M BX , а дифферентующий момент M Д = М У = G К e sin φ + M В Y .

Для определения восстанавливающего момента рассмотрим рис. 2.12, на котором показано сечение понтона по плоскости миделя в положениях до и после приложения кренящего момента. Центр тяжести крана с понтоном обозначен ЦТ . На кран, находящийся в состоянии покоя, действуют вертикальные силы, имеющие равнодействующую N , и выталкивающая сила D = Vρg , где V - вытесненный объем; ρ - плотность воды; g - ускорение свободного падения. Согласно закону Архимеда, D = N .

В состоянии равновесия силы N и D действуют по одной вертикали, проходящей через центр тяжести и центр величины и называемой осью плавания. В этом случае угол крена может иметь некоторое значение θ (см.рис. 2.10).

Рис. 2.11. Схема к определению кренящего и дифферентующего моментов


Рис. 2.12. Схема положения понтона до (а ) и после (б ) приложения кренящего момента

Допустим, что к крану приложен статический кренящий момент М К , вызываемый, например, весом груза G на конце стрелы крана. При этом центр величины смещается. Изменением сил D и G по сравнению с состоянием равновесия можно пренебречь, так как вес груза существенно меньше веса крана. Тогда сила D в наклонном положении крана будет приложена в точке ЦВ (рис. 2.12,б ). В этом случае возникнет восстанавливающий момент сил D и N = D на плече l θ , равный кренящему моменту M K , т.е. , где - поперечная метацентрическая высота, т.е. расстояние от метацентра до центра тяжести.

Метацентром называется точка F пересечения оси плавания с линией действия силы D , а метацентрическим радиусом - расстояние от метацентра F до центра величины.

При дифференте на угол ψ восстанавливающий момент равен дифферентующему моменту M Д , т.е. , где - продольная метацентрическая высота; a - расстояние между центрами тяжести и величины. Произведения и называются коэффициентами статической остойчивости.

Определим метацентрические радиусы и . Из теории корабля известно следующее:

1) при малых углах крена θ и дифферента ψ положение метацентра F неизменно, а центр величины перемещается по дуге окружности, описанной вокруг метацентра;

2) метацентрический радиус R = J / V , где J - момент инерции площади, ограниченной ватерлинией, относительно соответствующей оси, вокруг которой происходит наклон крана.

Для крана, находящегося в состоянии покоя, ограниченная ватерлинией площадь равна BL .

Для прямоугольного понтона (без учета обводов и скосов) моменты инерции относительно главных осей J Х = L B 3 / 12 ; J Y = B L 3 / 12 ,а вытесненный объем воды V = B L T . В этом случае метацентрические радиусы ; .

Таким образом, углы крена и дифферента в зависимости от кренящего и дифферентующего моментов определяют из выражений

; .

а ) б ) б ,в

Рис. 2.13. Диаграммы остойчивости плавучего крана: а – статической М ВК (q); б – динамической А В (q)

Для поворотных кранов с качающейся стрелой эти углы переменны как по вылету, так и по углу вращения.

Восстанавливающие моменты при крене и дифференте определяются по формулам вида:

; (2.1)

При углах крена, больших 15 ° , формула (2.1) неприменима, а восстанавливающий момент М ВК в зависимости от угла θ изменяется по диаграмме статической остойчивости (рис. 2.13) . При постепенном возрастании кренящего момента до значения, равного максимальному значению восстанавливающего момента М ВК max на диаграмме, угол крена достигает θ М , и кран будет неустойчивым, так как любое случайное наклонение в сторону крена приведет к опрокидыванию. Приложение кренящих моментов M θ ³ М ВК max недопустимо. Точка К (закат диаграммы) характеризует предельный угол крена θ П , при превышении которого М ВК < 0 и кран опрокидывается . Диаграмма статической остойчивости входит в обязательную документацию крана; ее построение по чертежу понтона либо по приближенным формулам приведено в работе .

При внезапном (или за время, меньшее полупериода собственных колебаний) приложении к ненакрененному понтону динамического момента М Д (см. рис. 2.13,а ), остающегося в дальнейшем постоянным, в начальный период крена М Д > М ВК и судно будет крениться с ускорением, накапливая кинетическую энергию. Дойдя до угла статического крена q (точка В ), судно будет крениться дальше до угла динамического крена q Д , когда запас кинетической энергии израсходуется на преодоление работы восстанавливающего момента и сил сопротивления (точка С , отвечающая равенству площадей ОАВ и СВЕ ). При q Д £ 10…15 О (рис. 2.13, а ) можно считать q Д = 2q (с учетом сопротивления воды q Д = 2 x q , где x - коэффициент затухания (x » 0,7) ; при наличии начального угла крена ±q 0 угол динамического крена q Д = ± q 0 + 2q . Опрокидывающий динамический момент М Д.ОПР и угол опрокидывания q Д.ОПР определяют, найдя прямую АЕ , отсекающую на диаграмме статической остойчивости равные площади ОАВ и ВМЕ (рис. 2.13,б ).

Диаграмма динамической остойчивости (см. рис. 2.13) - это график зависимости работы восстанавливающего момента А В = D от угла крена (l q - плечо восстанавливающего момента при крене (см. рис. 2.12); она является интегральной кривой по отношению к диаграмме статической остойчивости; величина d В = А В / D = называется плечом динамической остойчивости . Работа кренящего момента А К = М Д q Д = D d К , где d К = А К / D Д = М Д q Д / D удельная работа кренящего момента. График А К (q Д ) есть прямая OF , проходящая через точки O и F с координатами (1 рад, М Д ); Точка Р пересечения (см. рис. 2.13,а ) или касания (см. рис. 2.13,б ) диаграммы динамической остойчивости с прямой OF определяет угол динамического крена q Д (а ) или угол опрокидывания при динамическом крене q Д.ОПР (б ).

Динамический крен (или дифферент) возникает при подъеме груза рывком или при обрыве груза. На рис. 2.14 показаны положения зеркала воды относительно понтона для крана без груза (положение равновесия 1 при угле крена q 0 ) и с грузом при статическом крене (положение 2 при угле крена q ). Для нормальной эксплуатации крана желательно иметь равенство абсолютных величин углов крена для груженого и порожнего крана. При обрыве груза кран будет колебаться относительно положения равновесия 1 с амплитудой Δq (см. рис. 2.14), достигая положения 3 при угле динамического крена q ДИН = q 0 + Δq . Значения последнего получают более точными, если учитывают сопротивление воды, по формуле

q ДИН = q 0 + (0,5 – 0,7) Δq .


Рис. 2.14. Схема понтона к определению динамического крена

Определение опрокидывающего момента и угла динамического крена в рабочем состоянии при обрыве груза по диаграмме динамической остойчивости, а также проверка остойчивости крана при переходе, перегоне, в нерабочем состоянии; определение опрокидывающего момента в походном состоянии и максимального восстанавливающего момента в нерабочем состоянии подробно рассмотрены в работе .

Нагрузки на механизм вращения и изменения вылета. На рис. 2.15,а показаны поперечное (в плоскости Y ) и продольное (в плоскости X) сечения понтона после крена на угол q и дифферента на угол ψ .

Вес G К поворотной части крана с грузом имеет составляющие S У и S X , действующие в плоскости вращения и определяемые по зависимостям вида S У = G К sinq и S Х = G К sin ψ .

Для плавучего крана дополнительный момент, вызываемый креном и дифферентом и действующий на механизм вращения (рис. 2.11), определяется по формуле

Это выражение можно исследовать на максимум М φ . В частности, если составляющая дифферентующего момента М ψ = G К a – G 0 b = 0 (уравновешенный понтон), то максимум М φ достигается при φ = 45 o .

Силы S Х и S У имеют составляющие, действующие в плоскости качания стрелы и перпендикулярно ей. Составляющие, действующие перпендикулярно плоскости качания стрелы, создают момент, нагружающий механизм вращения, выражение для которого получено выше. Суммарная сила Т составляющих сил S Х и S У в плоскости качания стрелы определяется по выражению вида Т= S Х sin φ + S Y cos φ = G К (sinq sin φ – sin ψ cos φ).

Эта сила действует в плоскости качания стрелы и направлена вдоль понтона. На рис. 2.15, б показано разложение веса G К на силу R , перпендикулярную основной плоскости понтона и учитываемую в расчетах механизма изменения вылета, и на силу T , параллельную продольной оси понтона и создающую дополнительную нагрузку, вызываемую креном и дифферентом. Таким образом, в центре тяжести каждого узла поворотной части крана (стрелы, хобота и т.д.) весом G i возникает сила T i , вызванная креном и дифферентом. Дополнительный момент М , нагружающий механизм изменения вылета, определяется по формуле .

Нагрузки от сил инерции , действующие на кран при поперечной и продольной качках судна, подробно представлены в работах .

Непотопляемость – способность судна сохранять минимально необходимые плавучесть и остойчивость после затопления одного или нескольких отсеков корпуса. Расчет непотопляемости подробно представлен в работе .

GANZ – одна из старейших марок плавкранов в мире , представлена полным модельным рядом, который по назначению плавучих кранов можно классифицировать как:

Грузовые грейферные плавкраны

Грузоподъемность от 5 до 60 тонн. Полноповоротные, с прямой или шарнирно-сочлененной с жесткой оттяжкой стрелой. Буксируемые или самоходные. Полноавтономного или вахтенно-сменного исполнения. Для перегрузки больших объемов всех видов сыпучих / навалочных грузов. За счет сочетания повышенной плавучести, остойчивости и рыскливости конструкции плавкрана в целом с большой скоростью выполнения всех основных операций достигается высокая производительность перегрузки: от 300 до 2000 тонн/час. Могут иметь речное и морское, а также ледовый класс исполнения. В плавкранах свыше 5 тонн используется 4-х канатный грейфер. Используются в качестве земснаряда углубления дна с возможностью оснащения ленточным конвейером для выгрузки извлекаемого грунта. Возможность работы в крюковом режиме, при котором повышается грузоподъемность, но уменьшается скорость выполнения операций.

Грузовые крюковые плавкраны

Грузоподъемность от 5 до 200 тонн. Полноповоротные, с прямой или шарнирно-сочлененной с жесткой оттяжкой стрелой. Буксируемые или самоходные. Полноавтономного или вахтенно-сменного исполнения. Для перегрузки штучных и тяжелых грузов. При прочем сходстве характеристик, от грузовых грейферных плавкранов отличает наличие пониженных скоростей выполнения основных операций, требующихся для более точных работ. Могут иметь речное и морское, а также ледовый класс исполнения.

Монтажно-строительные плавкраны

Грузоподъемность от 16 до 300 тонн. Полноповоротные, с прямой или шарнирно-сочлененной с жесткой оттяжкой стрелой. Буксируемые или самоходные. Полноавтономного или вахтенно-сменного исполнения. Используются в судостроении, тяжелом, энергетическом, транспортном машиностроении, строительстве мостов и гидротехнических сооружений, а также работах по освоению морского шельфа. Отличает работа на режиме пониженных скоростей: 1-12 метров/минуту. Могут иметь речное и морское, а также ледовый класс исполнения.

Монтажно-спасательные плавкраны

Грузоподъемность от 200 до 500 тонн и выше. С прямой, наклонной фиксированной стреловой системой. Буксируемые или самоходные. Полноавтономного или вахтенно-сменного исполнения. В соответствии с назначением могут оснащаться разнообразным вспомогательным оборудованием. Используются в судостроении, тяжелом, энергетическом, транспортном машиностроении, строительстве мостов и гидротехнических сооружений, работах по освоению морского шельфа и подводных спасательных работах. Скоростной режим работы: 0,1-5 метров/минуту. Могут иметь речное и морское, а также ледовый класс исполнения. Возможно оснащение стрелы хоботом для работ с грузами меньше номинальной грузоподъемности в случаях где требуется очень большой вылет стрелы.

Плавучий кран – чрезвычайно универсальное и надежное оборудование. Используются для погрузки-разгрузки судов, работ по углублению дна, строительства мостов и других водных сооружений.

Плавкран практически незаменим в порту для многоцелевых работ, благодаря чему относительно высокая стоимость окупается за короткий срок.

  • Плавкран с грузоподъемностью 16 т
  • Плавкран с грузоподъемностью 32 т (Al Furat)
  • Плавкран с грузоподъемностью 32 т (Hafez)
  • Плавкран с грузоподъемностью 100 т (El Mansour)

Похожие статьи

© 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.