Примеры систем линейных уравнений: метод решения. Алгоритм решения рациональных уравнений Алгоритм решения простых уравнений

«Метод Гаусса и Крамера» - Метод Гаусса. Элементарные преобразования. Разделим первое уравнение системы (1) на а11. (5). Умер Гаусс 23 февраля 1855 года в Гёттингене. Метод Гаусса - классический метод решения системы линейных алгебраических уравнений. Затем х2 и х3 подставляют в первое уравнение и находят х1. Пусть коэффициент.

«Уравнения и неравенства» - Заключается в следующем: строят в одной системе координат графики двух функций. 4. Графический метод при определении количества корней уравнения. 3. Сколько корней имеет уравнение? 2. Найдите сумму чисел, удовлетворяющих неравенству. Решение системы графическим способом. 3. Найдите промежуток, содержащий наибольшее целое число, удовлетворяющее неравенству.

«Теорема Гаусса-Маркова» - Докажем несмещенность оценок (7.3). Сформируем вектора и матрицу коэффициентов на основе системы (7.2). Если матрица Х неколлинеарна и вектор случайных возмущений удовлетворяет следующим требованиям: Где. (7.7). Для получения необходимого условия экстремума дифференцируем (7.6) по вектору параметров.

«Способы решения систем уравнений» - Б. 1. Вычислите: 14. 6. Сколько процентов составляет число 8 от своего квадрата? 12. 7. Найдите наибольший корень уравнения. 9. График какой функции изображен на рисунке? Найдите значение выражения. %. Х. O. В. 15х + 10(1 – х) = 1.

«Иррациональное уравнение» - Найди ошибку. Уравнения, в которых переменная содержится под знаком корня, называются иррациональными. ? Х – 6 = 2 ? х – 3 = 0 ? х + 4 =7 ? 5 – х = 0 ? 2 – х = х + 4. ПРОБЛЕМА: Учащиеся не всегда умеют сознательно использовать информацию об иррациональных уравнениях. Является ли число x корнем уравнения: а) ? х – 2 = ?2 – х, х0 = 4 б) ?2 – х = ? х – 2, х0 = 2 в) ? х – 5 = ? 2х – 13, х0 = 6 г) ? 1 – х = ? 1 + х, х0 = 0.

«Решение уравнений с параметром» - Решение. Пример. 6 класс. Примеры: В 5 классе при повторении свойств чисел можно рассмотреть примеры. На внеклассных занятиях по математике в 6 классе рассматривается решение уравнений с параметрами вида: 1) ах = 6 2) (а – 1)х = 8,3 3) bх = -5. При а = -1/2 получим уравнение 0х = 0. Уравнение имеет бесконечное множество решений.

Всего в теме 49 презентаций

Проще говоря, это уравнения, в которых есть хотя бы одна с переменной в знаменателе.

Например:

\(\frac{9x^2-1}{3x}\) \(=0\)
\(\frac{1}{2x}+\frac{x}{x+1}=\frac{1}{2}\)
\(\frac{6}{x+1}=\frac{x^2-5x}{x+1}\)


Пример не дробно-рациональных уравнений:

\(\frac{9x^2-1}{3}\) \(=0\)
\(\frac{x}{2}\) \(+8x^2=6\)

Как решаются дробно-рациональные уравнения?

Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным.


Алгоритм решения дробно-рационального уравнения:

    Выпишите и «решите» ОДЗ.

    Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут.

    Запишите уравнение, не раскрывая скобок.

    Решите полученное уравнение.

    Проверьте найденные корни с ОДЗ.

    Запишите в ответ корни, которые прошли проверку в п.7.

Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам.


Пример . Решите дробно-рациональное уравнение \(\frac{x}{x-2} - \frac{7}{x+2}=\frac{8}{x^2-4}\)

Решение:

Ответ: \(3\).


Пример . Найдите корни дробно-рационального уравнения \(=0\)

Решение:

\(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{x^2+7x+10}\) \(=0\)

ОДЗ: \(x+2≠0⇔x≠-2\)
\(x+5≠0 ⇔x≠-5\)
\(x^2+7x+10≠0\)
\(D=49-4 \cdot 10=9\)
\(x_1≠\frac{-7+3}{2}=-2\)
\(x_2≠\frac{-7-3}{2}=-5\)

Записываем и «решаем» ОДЗ.

Раскладываем \(x^2+7x+10\) на по формуле: \(ax^2+bx+c=a(x-x_1)(x-x_2)\).
Благо \(x_1\) и \(x_2\) мы уже нашли.

\(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{(x+2)(x+5)}\) \(=0\)

Очевидно, общий знаменатель дробей: \((x+2)(x+5)\). Умножаем на него всё уравнение.

\(\frac{x(x+2)(x+5)}{x+2} + \frac{(x+1)(x+2)(x+5)}{x+5}-\)
\(-\frac{(7-x)(x+2)(x+5)}{(x+2)(x+5)}\) \(=0\)

Сокращаем дроби

\(x(x+5)+(x+1)(x+2)-7+x=0\)

Раскрываем скобки

\(x^2+5x+x^2+3x+2-7+x=0\)


Приводим подобные слагаемые

\(2x^2+9x-5=0\)


Находим корни уравнения

\(x_1=-5;\) \(x_2=\frac{1}{2}.\)


Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень.

Ответ: \(\frac{1}{2}\).

Рациональные выражения и рациональные уравнения

Мы уже научились решать квадратные уравнения. Теперь распространим изученные методы на рациональные уравнения.

Что такое рациональное выражение? Мы уже сталкивались с этим понятием. Рациональными выражениями называются выражения, составленные из чисел, переменных, их степеней и знаков математических действий.

Соответственно, рациональными уравнениями называются уравнения вида: , где - рациональные выражения.

Раньше мы рассматривали только те рациональные уравнения, которые сводятся к линейным. Теперь рассмотрим и те рациональные уравнения, которые сводятся и к квадратным.

Пример 1

Решить уравнение: .

Решение:

Дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель не равен 0.

Получаем следующую систему:

Первое уравнение системы - это квадратное уравнение. Прежде чем его решать, поделим все его коэффициенты на 3. Получим:

Получаем два корня: ; .

Поскольку 2 никогда не равно 0, то необходимо, чтобы выполнялись два условия: . Поскольку ни один из полученных выше корней уравнения не совпадает с недопустимыми значениями переменной, которые получились при решении второго неравенства, они оба являются решениями данного уравнения.

Ответ: .

Алгоритм решения рационального уравнения

Итак, давайте сформулируем алгоритм решения рациональных уравнений:

1. Перенести все слагаемые в левую часть, чтобы в правой части получился 0.

2. Преобразовать и упростить левую часть, привести все дроби к общему знаменателю.

3. Полученную дробь приравнять к 0, по следующему алгоритму: .

4. Записать те корни, которые получились в первом уравнении и удовлетворяют второму неравенству, в ответ.

Пример решения рационального уравнения

Давайте рассмотрим еще один пример.

Пример 2

Решить уравнение: .

Решение

В самом начале перенесем все слагаемые в левую сторону, чтобы справа остался 0. Получаем:

Теперь приведем левую часть уравнения к общему знаменателю:

Данное уравнение эквивалентно системе:

Первое уравнение системы - это квадратное уравнение.

Коэффициенты данного уравнения: . Вычисляем дискриминант:

Получаем два корня: ; .

Теперь решим второе неравенство: произведение множителей не равно 0 тогда и только тогда, когда ни один из множителей не равен 0.

Необходимо, чтобы выполнялись два условия: . Получаем, что из двух корней первого уравнения подходит только один - 3.

Мы уже научились решать квадратные уравнения. Теперь распространим изученные методы на рациональные уравнения.

Что такое рациональное выражение? Мы уже сталкивались с этим понятием. Рациональными выражениями называются выражения, составленные из чисел, переменных, их степеней и знаков математических действий.

Соответственно, рациональными уравнениями называются уравнения вида: , где - рациональные выражения.

Раньше мы рассматривали только те рациональные уравнения, которые сводятся к линейным. Теперь рассмотрим и те рациональные уравнения, которые сводятся и к квадратным.

Пример 1

Решить уравнение: .

Решение:

Дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель не равен 0.

Получаем следующую систему:

Первое уравнение системы - это квадратное уравнение. Прежде чем его решать, поделим все его коэффициенты на 3. Получим:

Получаем два корня: ; .

Поскольку 2 никогда не равно 0, то необходимо, чтобы выполнялись два условия: . Поскольку ни один из полученных выше корней уравнения не совпадает с недопустимыми значениями переменной, которые получились при решении второго неравенства, они оба являются решениями данного уравнения.

Ответ: .

Итак, давайте сформулируем алгоритм решения рациональных уравнений:

1. Перенести все слагаемые в левую часть, чтобы в правой части получился 0.

2. Преобразовать и упростить левую часть, привести все дроби к общему знаменателю.

3. Полученную дробь приравнять к 0, по следующему алгоритму: .

4. Записать те корни, которые получились в первом уравнении и удовлетворяют второму неравенству, в ответ.

Давайте рассмотрим еще один пример.

Пример 2

Решить уравнение: .

Решение

В самом начале перенесем все слагаемые в левую сторону, чтобы справа остался 0. Получаем:

Теперь приведем левую часть уравнения к общему знаменателю:

Данное уравнение эквивалентно системе:

Первое уравнение системы - это квадратное уравнение.

Коэффициенты данного уравнения: . Вычисляем дискриминант:

Получаем два корня: ; .

Теперь решим второе неравенство: произведение множителей не равно 0 тогда и только тогда, когда ни один из множителей не равен 0.

Необходимо, чтобы выполнялись два условия: . Получаем, что из двух корней первого уравнения подходит только один - 3.

Ответ: .

На этом уроке мы вспомнили, что такое рациональное выражение, а также научились решать рациональные уравнения, которые сводятся к квадратным уравнениям.

На следующем уроке мы рассмотрим рациональные уравнения как модели реальных ситуаций, а также рассмотрим задачи на движение.

Список литературы

  1. Башмаков М.И. Алгебра, 8 класс. - М.: Просвещение, 2004.
  2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра, 8. 5-е изд. - М.: Просвещение, 2010.
  3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра, 8 класс. Учебник для общеобразовательных учреждений. - М.: Просвещение, 2006.
  1. Фестиваль педагогических идей "Открытый урок" ().
  2. School.xvatit.com ().
  3. Rudocs.exdat.com ().

Домашнее задание

Алгоритм решения уравнений :

1. Раскрыть скобки.

)

Алгоритм решения уравнений :

1. Раскрыть скобки.

2. Собрать члены, содержащие неизвестные, в одной части уравнения, а остальные члены в другой.(при переносе меняем знак на противоположный )

3. Привести подобные слагаемые в каждой части уравнения.

4. Разделить обе части уравнения на коэффициент при неизвестном.

(Примечание: часто встречаются уравнения, для решения которых некоторые из указанных этапов оказываются ненужными.)

Алгоритм решения уравнений :

1. Раскрыть скобки.

2. Собрать члены, содержащие неизвестные, в одной части уравнения, а остальные члены в другой.(при переносе меняем знак на противоположный )

3. Привести подобные слагаемые в каждой части уравнения.

4. Разделить обе части уравнения на коэффициент при неизвестном.

(Примечание: часто встречаются уравнения, для решения которых некоторые из указанных этапов оказываются ненужными.)

Алгоритм решения уравнений :

1. Раскрыть скобки.

2. Собрать члены, содержащие неизвестные, в одной части уравнения, а остальные члены в другой.(при переносе меняем знак на противоположный )

3. Привести подобные слагаемые в каждой части уравнения.

4. Разделить обе части уравнения на коэффициент при неизвестном.

(Примечание: часто встречаются уравнения, для решения которых некоторые из указанных этапов оказываются ненужными.)

Алгоритм решения уравнений :

1. Раскрыть скобки.

2. Собрать члены, содержащие неизвестные, в одной части уравнения, а остальные члены в другой.(при переносе меняем знак на противоположный )

3. Привести подобные слагаемые в каждой части уравнения.

4. Разделить обе части уравнения на коэффициент при неизвестном.

(Примечание: часто встречаются уравнения, для решения которых некоторые из указанных этапов оказываются ненужными.)

Алгоритм решения уравнений :

1. Раскрыть скобки.

2. Собрать члены, содержащие неизвестные, в одной части уравнения, а остальные члены в другой.(при переносе меняем знак на противоположный )

3. Привести подобные слагаемые в каждой части уравнения.

4. Разделить обе части уравнения на коэффициент при неизвестном.

(Примечание: часто встречаются уравнения, для решения которых некоторые из указанных этапов оказываются ненужными.)

Алгоритм решения уравнений :

1. Раскрыть скобки.

2. Собрать члены, содержащие неизвестные, в одной части уравнения, а остальные члены в другой.(при переносе меняем знак на противоположный )

3. Привести подобные слагаемые в каждой части уравнения.

4. Разделить обе части уравнения на коэффициент при неизвестном.

(Примечание: часто встречаются уравнения, для решения которых некоторые из указанных этапов оказываются ненужными.)

Алгоритм решения уравнений :

1. Раскрыть скобки.

2. Собрать члены, содержащие неизвестные, в одной части уравнения, а остальные члены в другой.(при переносе меняем знак на противоположный )

3. Привести подобные слагаемые в каждой части уравнения.

4. Разделить обе части уравнения на коэффициент при неизвестном.

(Примечание: часто встречаются уравнения, для решения которых некоторые из указанных этапов оказываются ненужными.)

Похожие статьи

© 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.