Строение нервной системы таблица по биологии. Краткое описание строения нервной системы

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-1.jpg" alt=">Строение и значение нервной системы ">

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-2.jpg" alt="> Нервная система НЕРВНАЯ СИСТЕМА, сложная сеть структур, пронизывающая весь организм и обеспечивающая саморегуляцию"> Нервная система НЕРВНАЯ СИСТЕМА, сложная сеть структур, пронизывающая весь организм и обеспечивающая саморегуляцию его жизнедеятельности благодаря способность реагировать на внешние и внутренние воздействия (стимулы). Основные функции нервной системы – получение, хранение и переработка информации из внешней и внутренней среды, регуляция и координация деятельности всех органов и органных систем.

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-3.jpg" alt=">Нервная система состоит из нейронов, или нервных клеток и нейроглии, или"> Нервная система состоит из нейронов, или нервных клеток и нейроглии, или нейроглиальных клеток. Нейроны - это основные структурные и функциональные элементы как в центральной, так и периферической нервной системе. Нейроны - это возбудимые клетки, то есть они способны генерировать и передавать электрические импульсы (потенциалы действия). Нейроны имеют различную форму и размеры, формируют отростки двух типов: аксоны и дендриты. У нейрона обычно несколько коротких разветвленных дендритов, по которым импульсы следуют к телу нейрона, и один длинный аксон, по которому импульсы идут от тела нейрона к другим клеткам (нейронам, мышечным либо железистым клеткам). Передача возбуждения с одного нейрона на другие клетки происходит посредством специализированных контактов - синапсов.

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-4.jpg" alt=">Нервная система состоит из ">

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-5.jpg" alt="> Центральная нервная система состоит из Головного мозга, спинного мозга "> Центральная нервная система состоит из Головного мозга, спинного мозга и их защитных оболочек

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-6.jpg" alt=">Строение и функции спинного мозга Спинной мозг находится в "> Строение и функции спинного мозга Спинной мозг находится в позвоночном канале на протяжении от I шейного до II поясничного позвонка. Внешне спинной мозг напоминает тяж цилиндрической формы. От спинного мозга отходит 31 пара спинномозговых нервов, которые покидают позвоночный канал через соответствующие межпозвоночные отверстия и симметрично разветвляются в правой и левой половинах тела. В спинном мозге выделяют шейный, грудной, поясничный, крестцовый и копчиковый отделы, соответственно, среди спинномозговых нервов рассматривают 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 -3 копчиковых нерва. Участок спинного мозга, соответствующий паре (правому и левому) спинномозговых нервов, называют сегментом спинного мозга.

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-8.jpg" alt=">СПИННОЙ МОЗГ расположен внутри позвоночного столба. Он начинается от головного мозга и имеет вид"> СПИННОЙ МОЗГ расположен внутри позвоночного столба. Он начинается от головного мозга и имеет вид белого шнура диаметром около 1 см. На передней и задней сторонах спинной мозг имеет глубокие продольные борозды. Они длят его на правую и левую части. На поперечном разрезе можно видеть узкий центральный канал, проходящий по всей длине спинного мозга. Он заполнен спинномозговой жидкостью. Спинной мозг состоит из белого вещества, находящегося по краям серого вещества, расположенного в центре и имеющего вид крыльев бабочки. В сером веществе находятся тела нервных клеток, а в белом - их отростки. В передних отделах серого вещества спинного мозга расположены исполнительные нейроны, а в задних отделах и вокруг центрального канала - вставочные нейроны

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-9.jpg" alt="> Спиной мозг выполняет две функции: рефлекторную и проводящую. ">

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-10.jpg" alt=">Спинной мозг выполняет две основные функции - Рефлекторную и проводящую. Рефлекторная функция заключается"> Спинной мозг выполняет две основные функции - Рефлекторную и проводящую. Рефлекторная функция заключается в том, что спинной мозг обеспечивает осуществление простейших рефлексов, таких как разгибание и сгибание конечностей, а также более сложных рефлексов, которые кроме того контролируются и головным мозгом. Нервные импульсы от рецепторов кожи, мышц и внутренних органов проводятся по белому веществу спинного мозга в головной мозг, а импульсы из головного мозга направляются к исполнительным нейронам спинного мозга. В этом и заключается проводящая функция спинного мозга.

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-11.jpg" alt=">Строение и функции головного мозга. Головной мозг располагается в полости"> Строение и функции головного мозга. Головной мозг располагается в полости черепа и имеет сложную форму. Масса головного мозга у взрослого человека от 1100 до 2000 г, составляя в среднем 1300 -1400 г. Это всего около 2% от массы тела. Масса головного мозга у женщин несколько меньше, чем у мужчин, это различие обусловлено разной массой тела. Мозг человека состоит из ствола, мозжечка и полушарий большого мозга.

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-12.jpg" alt="> Безусловные рефлексы головного мозга. Отдел мозга Название рефлекса Раздражитель "> Безусловные рефлексы головного мозга. Отдел мозга Название рефлекса Раздражитель Ответная реакция Продолговатый мозг Глотательный рефлекс Механическое Акт глотания воздействие на корень языка Средний мозг Тонический рефлекс, Выход тела из состояния Движения, сохраняющий неустойчивого восстанавливающие устойчивость тела равновесия устойчивость тела, не допускающие его падения Средний мозг Ориентировочный Любой раздражитель Поворот в сторону из рефлекс обладающий новизной раздражителя, фиксация взгляда на нем, прислушивание и т. д. Промежуточный мозг Поздний рефлекс Прекращение движения, Сохранение позы путем человек принимает сокращения мышц новую позу противоположного действия, закрепляющих положение костей в суставах.

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-13.jpg" alt=">Промежуточный мозг проводит импульсы к коре полушарий большого мозга от рецепторов кожи, "> Промежуточный мозг проводит импульсы к коре полушарий большого мозга от рецепторов кожи, органов чувств. Мост- это место, где располагаются нервные волокна, по которым нервные импульсы идут вверх в кору большого мозга или обратно, вниз в спинной мозг, к мозжечку, к продолговатому мозгу. Мозжечок принимает участие в координации движений, делает их точными, целенаправленными.

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-14.jpg" alt=">Средний мозг участвует в рефлекторной регуляции различного рода движений, возникающих под влиянием"> Средний мозг участвует в рефлекторной регуляции различного рода движений, возникающих под влиянием зрительных и слуховых импульсов. Продолговатый мозг является продолжением спинного мозга, поэтому в их строении много общего. Только серое вещество у продолговатого мозга располагается отдельными скоплениями – ядрами. Сходны и функции: рефлекторные и проводящие.

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-15.jpg" alt="> Периферическая нервная система (нервы и нервные узлы) Соматическая Н. С. "> Периферическая нервная система (нервы и нервные узлы) Соматическая Н. С. Вегетативная Н. С. (Иннервирует скелет- (Иннервирует ра- ную мускулатуру.) боту внутренних органов.)

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-16.jpg" alt=">Соматическая Н. С. Соматическая нервная система обеспечивает иннервацию кожи"> Соматическая Н. С. Соматическая нервная система обеспечивает иннервацию кожи и скелетных мышц, стимулирует сердечную деятельность и др. Благодаря ей организм через органы чувств поддерживает связь с внешней средой. Путем сокращения скелетных мышц выполняются прежде всего защитные движения. Функции соматической нервной системы подконтрольны нашему сознанию.

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-17.jpg" alt=">Вегетативная нервная система Вегетативная нервная система(автономная нервная система), непроизвольная"> Вегетативная нервная система Вегетативная нервная система(автономная нервная система), непроизвольная нервная система, висцеральная нервная система) - часть нервной системы, обеспечивающая деятельность внутренних органов, регуляцию сосудистого тонуса, иннервацию желез, трофическую иннервацию скелетной мускулатуры, рецепторов и самой нервной системы. Взаимодействуя с соматической (анимальной) нервной системой и эндокринной системой, она обеспечивает поддержание постоянства гомеостаза и адаптацию в меняющихся условиях внешней среды. Безусловный рефлекс, всегда реализующийся при действии на организм определенных раздражителей на основе генетически обусловленной нервной связи между органами восприятия и исполнительными органами. Выделяются простые безусловные рефлексы, обеспечивающие элементарную работу отдельных органов и систем (сужение зрачков под действием света, кашель при попадании в гортань инородного тела), и более сложные, лежащие в основе инстинктов.

Src="https://present5.com/presentation/3/38271227_331973846.pdf-img/38271227_331973846.pdf-18.jpg" alt=">Спасибо за внимание ">

42. Вспомните материал курса «Зоология». Определите типы нервных систем, изображённых на рисунке. Напишите их названия. На изображении нервной системы человека подпишите её части.

43. Изучите материал учебника и дополните предложения.
Основу нервной системы составляют нервные клетки – нейроны. Они выполняют функции приема, обработки, передачи и хранения информации. Нервные клетки состоят из тела, отростков и нервных окончаний – рецепторов.

44. Запишите определения.
Дендриты – короткие отростки нейронов, (нервных клеток).
Аксоны – длинные отростки нейронов, (нервных клеток)
Серое вещество – скопление тел нейронов в головном и спинном мозге.
Белое вещество – скопление отростков нейронов в спинном и в головном мозге.
Рецепторы – нервные окончания разветвленных отростков нейронов.
Синапсы – особые контакты, которые образуются при помощи соединения нервных клеток друг с другом.

45. Изучите материал учебника и дополните схему «Строение нервной системы».


46. Запишите определения.
Нервы – это пучки длинных отростков нервных клеток, выходящих за пределы головного и спинного мозга.
Нервные узлы – это скопление тел нейронов вне центральной нервной системы.

47. Изучите материал учебника и дополните схему «Строение нервной системы».

48. Объясните, почему вегетативную нервную систему называют автономной системой.
Она управляет работой внутренних органов, обеспечивая их неизменную работу при изменении внешней среды или смене рода деятельности организма. Эта система не контролируется нашим сознанием.

49. Запишите определения.
Рефлекс – ответные реакции организма на воздействие внешней среды или на изменение его внутреннего состояния, выполняемые с участием нервной системы.
Рефлекторная дуга - путь, по которому проходит нервный импульс от места своего возникновения до рабочего органа.

Нервная система играет исключительную интегрирующую роль в жизнедеятельности организма, так как объединяет (интегрирует) его в единое целое и "вписывает" (интегрирует) его в окружающую среду. Она обеспечивает согласовнную работу отдельных частей организма (координацию ), поддержание равновесного состояния в организме (гомеостаз ) и приспособление организма к изменениям внешней и/или внутренней среды (адаптивное состояние и/или адаптивное поведение ).

Самое главное, что делает нервная система

Нервная система обеспечивает взаимосвязь и взаимодействие между организмом и внешней средой. И для этого ей требуется не так уж много процессов.

Основные процессы в нервной системе

1. Трансдукция . Превращение раздражения, внешнего по отношению к самой нервной системе, в нервное возбуждение, которым она может оперировать.

2. Трансформация . Переделка, преобразование входящего потока возбуждения в выходящий поток с отличающимися характеристиками.

3. Распределение . Распределение возбуждения и направление его по разным путям, по разным адресам.

4. Моделирование. Построение нервной модели раздражения и/или раздражителя, которая заменяет сам раздражитель. С этой моделью нервная система может работать, она может её хранить, видоизменять и использовать вместо реального раздражителя. Сенсорный образ - один из вариантов нервных моделей раздражения.

5. Модуляция . Нервная система под влиянием раздражения изменяет себя и/или свою деятельность.

Виды модуляции
1. Активация (возбуждение). Повышение активности нервной структуры, повышение её возбуждения и/или возбудимости. Доминантное состояние.
2. Угнетение (торможение, ингибиция). Понижение активности нервной структуры, торможение.
3. Пластическая перестройка нервной структуры.
Варианты пластических перестроек:
1) Сенситизация - улучшение передачи возбуждения.
2) Габитуация - ухудшение передачи возбуждения.
3) Временная нервная связь - создание нового пути передачи возбуждения.

6. Активация исполнительного органа для совершения действия. Таким способом нервная система обеспечивает рефлекторную ответную реакцию на раздражение .

© 2012-2017 Сазонов В.Ф. © 2012-2016 kineziolog.bodhy.ru..

Задачи и деятельность нервной системы

1. Произвести рецепцию - уловить изменение во внешней среде или внутренней среде организма в виде раздражения (это осуществляют сенсорные системы с помощью своих сенсорных рецепторов).

2. Произвести трансдукцию - преобразование (кодирование) этого раздражения в нервное возбуждение, т.е. поток нервных импульсов с особыми характеристиками, соответствующими раздражению.

3. Осуществить проведение - доставить по нервным путям возбуждение в необходимые участки нервной системы и к исполнительным органам (эффекторам).

4. Произвести перцепцию - создать нервную модель раздражения, т.е. построить его сенсорный образ.

5. Произвести трансформацию - преобразовать сенсорное возбуждение в эффекторное для осуществления ответной реакции на изменение среды.

6. Оценить результаты своей деятельности с помощью обратных связей и обратной афферентации.

Значение нервной системы:
1. Обеспечивает взаимосвязь между органами, системами органов и между отдельными частями организма. Это её координационная функция. Она координирует (согласовывает) работу отдельных органов в единую систему.
2. Обеспечивает взаимодействие организма с окружающей средой.
3. Обеспечивает мыслительные процессы. К этому относится восприятие информации, усвоение информации, анализ, синтез, сравнение с прошлым опытом, формирование мотивации, планирование, постановка цели, коррекция действия при достижении цели (исправление ошибок), оценка результатов деятельности, переработка информации, формирование суждений, заключений выводов и абстрактных (общих) понятий.
4. Осуществляет контроль за состоянием организма и отдельных его частей.
5. Управляет работой организма и его систем.
6. Обеспечивает активацию и поддержание тонуса, т.е. рабочего состояния органов и систем.
7. Поддерживает жизнедеятельности органов и систем. Кроме сигнальной функции нервная система имеет ещё и трофическую функцию, т.е. выделяемые ей биологически активные вещества способствуют жизнедеятельности иннервируемых органов. Органы, лишённые подобной "подпитки" со стороны нервных клеток, атрофируются, т.е. хиреют и могут отмереть.

Строение нервной системы

Рис. Общее строение нервной системы (схема). © 2017 Сазонов В.Ф..

Рис. Схема строения ЦНС (центральной нервной системы). Источник : Атлас по физиологии. В двух томах. Том 1: учеб. пособие / А. Г. Камкин, И. С. Киселева - 2010. - 408 с. (http://vmede.org/sait/?page=7&id=Fiziologiya_atlas_kamakin_2010&menu=Fiz...)

Видео: Центральная нервная система

Нервная система в функциональном и структурном отношении делится на периферическую и центральную нервную систему (ЦНС).

Центральная нервная система состоит из головного и спинного мозга.

Головной мозг находится внутри мозгового отдела черепа, а спинной мозг - в позвоночном канале.
Периферическая часть нервная система состоит из нервов, т.е. пучков нервных волокон, которые выходят за пределы головного и спинного мозга и направляются к различным органам тела. К ней относят также нервные узлы, или ганглии - скопления нервных клеток вне спинного и головного мозга.
Нервная система функционирует как единое целое.


Функции нервной системы:
1) формирование возбуждения;
2) передача возбуждения;
3) торможение (прекращение возбуждения, уменьшение его интенсивности, угнетение, ограничение распространения возбуждения);
4) интеграция (объединения различных потоков возбуждения и изменения этих потоков);
5) восприятие раздражения из внешней и внутренней среды организма с помощью специальных нервных клеток - рецепторов ;

6) кодирование, т.е. преобразование химического, физического раздражения в нервные импульсы;
7) трофическая, или питательная, функция - образование биологически активных веществ (БАВ).

Нейрон

Определение понятия

Нейрон - основная структурная и функциональная единица нервной системы.

Нейрон - это специализированная отросчатая клетка, способная воспринимать, проводить и передавать нервное возбуждение для обработки информации в нервной системе. © 2016 Сазонов В.Ф..

Нейрон - это сложно устроенная возбудимая секретирующая высокодифференцированная нервная клетка с отростками , которая воспринимает нервное возбуждение, перерабатывает его и передаёт другим клеткам. Кроме возбуждающего воздействия нейрон может оказывать на свои клетки-мишени также тормозное или модулирующее воздействие.

Работа тормозного синапса

Тормозный синапс на своей постсинаптической мембране имеет рецепторы к тормозному медиатору - гамма-аминомасляной кислоте (ГАМК или GABA). В отличие от возбуждающего синапса в тормозном синапсе на постсинаптической мембране ГАМК открывает ионные каналы не для натрия, а для хлора. Ионы хлора приносят в клетку не положительный заряд, а отрицательный, поэтому противодействуют взбуждению, т.к. нейтрализуют положительные заряды ионов натрия, возбуждающих клетку.

Видео: Работа ГАМК-рецептора и тормозного синапса

Итак, возбуждение через синапсы передаётся химическим путём с помощью особых управляющих веществ, находящихся в синаптических пузырьках, расположенных в пресинаптической бляшке . Общее название этих веществ - нейротрансмиттеры , т.е. "нейропередатчики". Их разделяют на медиаторы (посредники), которые передают возбуждение или торможение, и модуляторы , которые изменяют состояние постсинаптического нейрона, но возбуждение или торможение сами не передают.

Задачи урока:

  1. раскрыть значение нервной системы;
  2. систематизировать знания о строении нейрона;
  3. углубить понятие о рефлексе;
  4. установить значение всех звеньев рефлекторного пути.

Ход урока

1. Организационный момент.

2. Изучение нового материала.

А. Значение нервной системы.
Человек существо биологическое. Имеет клеточное строение, тело человека состоит из более чем ста триллионов клеток.

Каким образом обеспечивается согласованная работа клеток, органов, систем органов?

Как человек реагирует на изменения окружающей среды?

Эти функции в организме человека выполняет нервная система.

Итак, какие же функции выполняет нервная система? (1-й слайд ).

Б. Типы нервной системы у животных.

В процессе эволюции изменялась организация организмов, изменялось и строение нервной системы.

– Давайте вспомним какие типы нс различают у животных. (2-й слайд ).

Кишечно-полостные – диффузная.

Черви, членистоногие – узловая.

Позвоночные – трубчатая (рыбы, амфибии, птицы, млекопитающие – головной мозг).

Исходя из выше сказанного, можно сделать вывод:

Чем выше организация животного, тем сложнее деятельность и разнообразнее функции нерсной системы.

В. Нервная ткань.

– Какой тканью образована нервная система? (3-й слайд ).

– Какое строение имеет нервная ткань?

Нейроны различаются по форме, бывают – овальные, круглые, треугольные, звездчатые.

Отличительной особенностью нервных клеток является наличие у них отростков.

– Какое значение имеют отростки?

У нейронов два вида отростков, которые отличаются друг от друга. (4-й и 5-й слайды ).

Мы с вами сказали, что нервные клетки контактируют друг с другом при помощи отростков. В результате этого они обладают очень важными свойствами – возбудимостью и проводимостью.

Передача возбуждения от одной клетки к другой происходит в месте контакта клеток, которые называются – синапсами.

Нервная система осуществляет очень важные функции в нашем организме.

– А что лежит в основе деятельности нервной системы? (6-й слайд ).

– Что такое рефлекс? (7-й слайд ).

– При помощи чего осуществляется рефлекс?

– Рефлекторная дуга – это…

– Нервный импульс – это…

– Откуда берется нервный импульс?

Сгибательный рефлекс. (8-й слайд ).

По своему строению нервная система делится на 2 части. Какие? (9-й слайд ).

3. Обобщение изученного материала.

Сегодня на уроке мы с вами рассмотрели значение, строение и функционирование нервной системы.

Мы познакомились с понятием рефлекса, узнали как он функционирует, но не сказали кто впервые ввел понятие рефлекса. Чтобы ответить на этот вопрос нам нужно разгадать кроссворд. Если мы правильно это сделаем, то по диагонали прочитаем имя этого ученого.

В сетку кроссворда нужно вписать известные ключевые слова, с которыми мы познакомились при изучении темы «Нервная система».

  1. Отросток нервной клетки, по которому нервный импульс направляется к телу нервной клетки. (Дендрит ).
  2. Ответная реакция организма на раздражение, протекающая с участием центральной нервной системы. (Рефлекс ).
  3. Отросток нервной клетки, по которому осуществляется передача нервного импульса от тела нервной клетки. (Аксон ).
  4. Специализированные контакты между нервными клетками, а также между нервными клетками и клетками исполнительного органа, обеспечивающие передачу нервных импульсов. (Синапс ).
  5. Название нервной клетки. (Нейрон ).
  6. Часть головного мозга, которая граничит с продолговатым мозгом; она свойственна лишь млекопитающим и наибольшего развития достигла у человека. (Мост ).

Назовите мне имя французского философа и математика, жившего в XVII в. (Р.Декарт ).

Тест

  1. Что осуществляет в организме рецептор?
  2. Что такое рецептор? (глаз, ухо, язык, клетка с окончаниями нервных волокон ).
  3. Как называется отдел нервной системы, состоящий из головного и спинного мозга?
  4. Какую функцию в организме выполняют клетки-спутники?
  5. Что является структурной единицей нервной ткани?

4. Домашнее задание.

В приложении находится презентация к уроку.

По мере эволюционного усложнения многоклеточных организмов, функциональной специализации клеток, возникла необходимость регуляции и координации жизненных процессов на надклеточном, тканевом, органном, системном и организменном уровнях. Эти новые регуляторные механизмы и системы должны были появиться наряду с сохранением и усложнением механизмов регуляции функций отдельных клеток с помощью сигнальных молекул. Приспособление многоклеточных организмов к изменениям в среде существования могло быть выполнено при условии, что новые механизмы регуляции будут способны обеспечить быстрые, адекватные, адресные ответные реакции. Эти механизмы должны быть способны запоминать и извлекать из аппарата памяти сведения о предыдущих воздействиях на организм, а также обладать другими свойствами, обеспечивающими эффективную приспособительную деятельность организма. Ими стали механизмы нервной системы, появившейся у сложных, высокоорганизованных организмов.

Нервная система — это совокупность специальных структур, объединяющая и координирующая деятельность всех органов и систем организма в постоянном взаимодействии с внешней средой.

К центральной нервной системе относятся головной и спинной мозг. Головной мозг подразделяется на задний мозг ( и варолиев мост), ретикулярную формацию, подкорковые ядра, . Тела образуют серое вещество ЦНС, а их отростки (аксоны и дендриты) — белое вещество.

Общая характеристика нервной системы

Одной из функций нервной системы является восприятие различных сигналов (раздражителей) внешней и внутренней среды организма. Вспомним, что воспринимать разнообразные сигналы среды существования могут любые клетки с помощью специализированных клеточных рецепторов. Однако к восприятию ряда жизненно важных сигналов они не приспособлены и не могут мгновенно передать информацию другим клеткам, которые выполняют функцию регуляторов целостных адекватных реакций организма на действие раздражителей.

Воздействие раздражителей воспринимается специализированными сенсорными рецепторами. Примерами таких раздражителей могут быть кванты света, звуки, тепло, холод, механические воздействия (гравитация, изменение давления, вибрация, ускорение, сжатие, растяжение), а также сигналы сложной природы (цвет, сложные звуки, слово).

Для оценки биологической значимости воспринятых сигналов и организации на них адекватной ответной реакции в рецепторах нервной системы осуществляется их превращение - кодирование в универсальную форму сигналов, понятную нервной системе, — в нервные импульсы, проведение (передана) которых по нервным волокнам и путям в нервные центры необходимы для их анализа.

Сигналы и результаты их анализа используются нервной системой для организации ответных реакции на изменения во внешней или внутренней среде, регуляции и координации функции клеток и надклеточных структур организма. Такие ответные реакции осуществляются эффекторными органами. Наиболее частыми вариантами ответных реакций на воздействия являются моторные (двигательные) реакции скелетной или гладкой мускулатуры, изменение секреции эпителиальных (экзокринных, эндокринных) клеток, инициируемые нервной системой. Принимая прямое участие в формировании ответных реакций на изменения в среде существования, нервная система выполняет функции регуляции гомеостаза, обеспечения функционального взаимодействия органов и тканей и их интеграции в единый целостный организм.

Благодаря нервной системе осуществляется адекватное взаимодействие организма с окружающей средой не только через организацию ответных реакций эффекторными системами, но и через ее собственные психические реакции — эмоции, мотивации, сознание, мышление, память, высшие познавательные и творческие процессы.

Нервную систему подразделяют на центральную (головной и спинной мозг) и периферическую — нервные клетки и волокна за пределами полости черепной коробки и спинномозгового канала. Головной мозг человека содержит более 100 миллиардов нервных клеток (нейронов). Скопления нервных клеток, выполняющих или контролирующих одинаковые функции, формируют в центральной нервной системе нервные центры. Структуры мозга, представленные телами нейронов, формируют серое вещество ЦНС, а отростки этих клеток, объединяясь в проводящие пути, — белое вещество. Кроме этого, структурной частью ЦНС являются глиальные клетки, формирующие нейроглию. Число глиальных клеток приблизительно в 10 раз превышает число нейронов, и эти клетки составляют большую часть массы центральной нервной системы.

Нервную систему по особенностям выполняемых функций и строения делят на соматическую и автономную (вегетативную). К соматической относят структуры нервной системы, которые обеспечивают восприятие сенсорных сигналов преимущественно внешней среды через органы чувств, и контролируют работу поперечно-полосатой (скелетной) мускулатуры. К автономной (вегетативной) нервной системе относят структуры, которые обеспечивают восприятие сигналов преимущественно внутренней среды организма, регулируют работу сердца, других внутренних органов, гладкой мускулатуры, экзокринных и части эндокринных желез.

В центральной нервной системе принято выделять структуры, расположенные на различных уровнях, для которых свойственны специфические функции и роль в регуляции жизненных процессов. Среди них , базальные ядра, структуры ствола мозга, спинной мозг, периферическая нервная система.

Строение нервной системы

Нервную систему подразделяют на центральную и периферическую. К центральной нервной системе (ЦНС) относятся головной и спинной мозг, а к периферической — нервы, отходящие от центральной нервной системы к различным органам.

Рис. 1. Строение нервной системы

Рис. 2. Функциональное деление нервной системы

Значение нервной системы:

  • объединяет органы и системы организма в единое целое;
  • регулирует работу всех органов и систем организма;
  • осуществляет связь организма с внешней средой и приспособление его к условиям среды;
  • составляет материальную основу психической деятельности: речь, мышление, социальное поведение.

Структура нервной системы

Структурно-физиологической единицей нервной системы является - (рис. 3). Он состоит из тела (сомы), отростков (дендритов) и аксона. Дендриты сильно ветвятся и образуют множество синапсов с другими клетками, что определяет их ведущую роль в восприятии нейроном информации. Аксон начинается от тела клетки аксонным холмиком, являющимся генератором нервного импульса, который затем по аксону проводится к другим клеткам. Мембрана аксона в области синапса содержит специфические рецепторы, способные реагировать на различные медиаторы или нейромодуляторы. Поэтому на процесс выделения медиатора пресинаптическими окончаниями могут оказывать влияние другие нейроны. Также мембрана окончаний содержит большое число кальциевых каналов, через которые ионы кальция поступают внутрь окончания при его возбуждении и активизируют выделение медиатора.

Рис. 3. Схема нейрона (по И.Ф. Иванову): а — строение нейрона: 7 — тело (перикарион); 2 — ядро; 3 — дендриты; 4,6 — нейриты; 5,8 — миелиновая оболочка; 7- коллатераль; 9 — перехват узла; 10 — ядро леммоцита; 11 — нервные окончания; б — типы нервных клеток: I — униполярная; II — мультиполярная; III — биполярная; 1 — неврит; 2 -дендрит

Обычно в нейронах потенциал действия возникает в области мембраны аксонного холмика, возбудимость которой в 2 раза выше возбудимости других участков. Отсюда возбуждение распространяется по аксону и телу клетки.

Аксоны, помимо функции проведения возбуждения, служат каналами для транспорта различных веществ. Белки и медиаторы, синтезированные в теле клетки, органеллы и другие вещества могут перемещаться по аксону к его окончанию. Это перемещение веществ получило название аксонного транспорта. Существует два его вида — быстрый и медленный аксонный транспорт.

Каждый нейрон в центральной нервной системе выполняет три физиологические роли: воспринимает нервные импульсы с рецепторов или других нейронов; генерирует собственные импульсы; проводит возбуждение к другому нейрону или органу.

По функциональному значению нейроны подразделяют на три группы: чувствительные (сенсорные, рецепторные); вставочные (ассоциативные); моторные (эффекторные, двигательные).

Помимо нейронов в центральной нервной системе имеются глиальные клетки, занимающие половину объема мозга. Периферические аксоны также окружены оболочкой из глиальных клеток — леммоцитов (шванновские клетки). Нейроны и глиальные клетки разделены межклеточными щелями, которые сообщаются друге другом и образуют заполненное жидкостью межклеточное пространство нейронов и глии. Через это пространств происходит обмен веществами между нервными и глиальными клетками.

Клетки нейроглии выполняют множество функций: опорную, защитную и трофическую роль для нейронов; поддерживают определенную концентрацию ионов кальция и калия в межклеточном пространстве; разрушают нейромедиаторы и другие биологически активные вещества.

Функции центральной нервной системы

Центральная нервная система выполняет несколько функций.

Интегративная: организм животных и человека представляет собой сложную высокоорганизованную систему, состоящую из функционально связанных между собой клеток, тканей, органов и их систем. Эту взаимосвязь, объединение различных составляющих организма в единое целое (интеграция), их согласованное функционирование обеспечивает центральная нервная система.

Координирующая: функции различных органов и систем организма должны протекать согласованно, так как только при таком способе жизнедеятельности возможно поддерживать постоянство внутренней среды, равно как и успешно адаптировать к изменяющимся условиям окружающей среды. Координацию деятельности составляющих организм элементов осуществляет центральная нервная система.

Регулирующая: центральная нервная система регулирует все процессы, протекающие в организме, поэтому при ее участии происходят наиболее адекватные изменения работы различных органов, направленные на обеспечение той или иной его деятельности.

Трофическая: центральная нервная система осуществляет регуляцию трофики, интенсивности обменных процессов в тканях организма, что лежит в основе формирования реакций, адекватных происходящим изменениям во внутренней и внешней среде.

Приспособительная: центральная нервная система осуществляет связь организма с внешней средой путем анализа и синтеза поступающей к ней разнообразной информации от сенсорных систем. Это дает возможность перестраивать деятельность различных органов и систем в соответствии с изменениями среды. Она выполняет функции регулятора поведения, необходимого в конкретных условиях существования. Это обеспечивает адекватное приспособление к окружающему миру.

Формирование ненаправленного поведения: центральная нервная система формирует определенное поведение животного в соответствии с доминирующей потребностью.

Рефлекторная регуляция нервной деятельности

Приспособление процессов жизнедеятельности организма, его систем, органов, тканей к меняющимся условиям среды называется регуляцией. Регуляция, обеспечиваемая совместно нервной и гормональной системами, называется нервно-гормональной регуляцией. Благодаря нервной системе организм осуществляет свою деятельность по принципу рефлекса.

Основным механизмом деятельности центральной нервной системы является — это ответная реакция организма на действия раздражителя, осуществляемая с участием ЦНС и направленная на достижение полезного результата.

Рефлекс в переводе с латинского языка означает «отражение». Термин «рефлекс» был впервые предложен чешским исследователем И.Г. Прохаской, который развил учение об отражательных действиях. Дальнейшее становление рефлекторной теории связано с именем И.М. Сеченова. Он полагал, что все бессознательное и сознательное совершается по типу рефлекса. Но тогда еще не существовало методов объективной оценки деятельности мозга, которые могли бы подтвердить это предположение. Позднее объективный метод оценки деятельности мозга был разработан академиком И.П. Павловым, и он получил название метода условных рефлексов. С помощью этого метода ученый доказал, что в основе высшей нервной деятельности животных и человека лежат условные рефлексы, формирующиеся на базе безусловных рефлексов за счет образования временных связей. Академик П.К. Анохин показал, что все многообразие деятельности животных и человека осуществляется на основе концепции функциональных систем.

Морфологической основой рефлекса является , состоящая из нескольких нервных структур, которая обеспечивает осуществление рефлекса.

В образовании рефлекторной дуги участвуют три вида нейронов: рецепторные (чувствительные), промежуточные (вставочные), двигательные (эффекторные) (рис. 6.2). Они объединяются в нейронные цепи.

Рис. 4. Схема регуляции но принципу рефлекса. Рефлекторная дуга: 1 — рецептор; 2 — афферентный путь; 3 — нервный центр; 4 — эфферентный путь; 5 — рабочий орган (любой орган организма); МН — моторный нейрон; М — мышца; КН — командный нейрон; СН — сенсорный нейрон, МодН — модуляторный нейрон

Дендрит ренепторного нейрона контактирует с рецептором, его аксон направляется в ЦНС и взаимодействует с вставочным нейроном. От вставочного нейрона аксон идет к эффекторному нейрону, а его аксон направляется на периферию к исполнительному органу. Таким образом и формируется рефлекторная дуга.

Рецепторные нейроны расположены на периферии и во внутренних органах, а вставочные и двигательные находятся в ЦНС.

В рефлекторной дуге различают пять звеньев: рецептор, афферентный (или центростремительный) путь, нервный центр, эфферентный (или центробежный) путь и рабочий орган (или эффектор).

Рецептор — специализированное образование, воспринимающее раздражение. Рецептор состоит из специализированных высокочувствительных клеток.

Афферентное звено дуги представляет собой рецепторный нейрон и проводит возбуждение от рецептора к нервному центру.

Нервный центр образован большим числом вставочных и двигательных нейронов.

Это звено рефлекторной дуги состоит из совокупности нейронов, расположенных в различных отделах ЦНС. Нервный центр воспринимает импульсы от рецепторов по афферентному пути, осуществляет анализ и синтез этой информации, затем передает сформированную программу действий по эфферентным волокнам к периферическому исполнительному органу. А рабочий орган осуществляет свойственную ему деятельность (мышца сокращается, железа выделяет секрет и т.д.).

Специальное звено обратной афферентации воспринимает параметры совершенного рабочим органом действия и передает эту информацию в нервный центр. Нервный центр является акцептором действия звена обратной афферентации и воспринимает информацию с рабочего органа о совершенном действии.

Время от начала действия раздражителя на рецептор до появления ответной реакции называется временем рефлекса.

Все рефлексы у животных и человека подразделяются на безусловные и условные.

Безусловные рефлексы - врожденные, наследственно передающиеся реакции. Безусловные рефлексы осуществляются через уже сформированные в организме рефлекторные дуги. Безусловные рефлексы видоспецифичны, т.е. свойственны всем животным данного вида. Они постоянны в течение жизни и возникают в ответ на адекватные раздражения рецепторов. Безусловные рефлексы классифицируются и по биологическому значению: пищевые, оборонительные, половые, локомоторные, ориентировочные. По расположению рецепторов эти рефлексы подразделяются: на экстероцептивные (температурные, тактильные, зрительные, слуховые, вкусовые и др.), интероцептивные (сосудистые, сердечные, желудочный, кишечный и пр.) и проприоцептивные (мышечные, сухожильные и пр.). По характеру ответной реакции — на двигательные, секреторные и др. По нахождению нервных центров, через которые осуществляется рефлекс, — на спинальные, бульбарные, мезэнцефальные.

Условные рефлексы - рефлексы, приобретенные организмом в процессе его индивидуальной жизни. Условные рефлексы осуществляются через вновь сформированные рефлекторные дуги на базе рефлекторных дуг безусловных рефлексов с образованием между ними временной связи в коре больших полушарий.

Рефлексы в организме осуществляются с участием желез внутренней секреции и гормонов.

В основе современных представлений о рефлекторной деятельности организма находится понятие полезного приспособительного результата, для достижения которого и совершается любой рефлекс. Информация о достижении полезного приспособительного результата поступает в центральную нервную систему по звену обратной связи в виде обратной афферентации, которая является обязательным компонентом рефлекторной деятельности. Принцип обратной афферентации в рефлекторной деятельности был разработан П. К. Анохиным и основан на том, что структурной основой рефлекса является не рефлекторная дуга, а рефлекторное кольцо, включающее следующие звенья: рецептор, афферентный нервный путь, нервный центр, эфферентный нервный путь, рабочий орган, обратная афферентация.

При выключении любого звена рефлекторного кольца рефлекс исчезает. Следовательно, для осуществления рефлекса необходима целостность всех звеньев.

Свойства нервных центров

Нервные центры обладают рядом характерных функциональных свойств.

Возбуждение в нервных центрах распространяется односторонне от рецептора к эффектору, что связано со способностью проводить возбуждение только от пресинаптической мембраны к постсинаптической.

Возбуждение в нервных центрах проводится медленнее, чем по нервному волокну, в результате замедления проведения возбуждения через синапсы.

В нервных центрах может происходить суммация возбуждений.

Можно выделить два основных способа суммации: временную и пространственную. При временной суммации несколько импульсов возбуждения приходят к нейрону через один синапс, суммируются и генерируют в нем потенциал действия, а пространственная суммации проявляется в случае поступления импульсов к одному нейрону через разные синапсы.

В них происходит трансформация ритма возбуждения, т.е. уменьшение или увеличение количества импульсов возбуждения, выходящих из нервного центра по сравнению с количеством импульсов, приходящих к нему.

Нервные центры очень чувствительны к недостатку кислорода и действию различных химических веществ.

Нервные центры, в отличие от нервных волокон, способны к быстрому утомлению. Синаптическая утомляемость при длительной активации центра выражается в снижении числа постсинаптических потенциалов. Это обусловлено расходованием медиатора и накоплением метаболитов, закисляющих среду.

Нервные центры находятся в состоянии постоянного тонуса, обусловленного непрерывным поступлением определенного числа импульсов от рецепторов.

Нервным центрам свойственна пластичность — способность увеличивать свои функциональные возможности. Это свойство может быть обусловлено синаптическим облегчением — улучшение проведения в синапсах после короткого раздражения афферентных путей. При частом использовании синапсов ускоряется синтез рецепторов и медиатора.

Наряду с возбуждением в нервном центре происходят процессы торможения.

Координационная деятельность ЦНС и ее принципы

Одной из важных функций центральной нервной системы является координационная функция, которую называют также координационной деятельностью ЦНС. Под ней понимают регуляцию распределения возбуждения и торможения в нейронных структурах, а также взаимодействие между нервными центрами, которые обеспечивают эффективное осуществление рефлекторных и произвольных реакций.

Примером координационной деятельности ЦНС могут быть реципрокные отношения между центрами дыхания и глотания, когда во время глотания центр дыхания затормаживается, надгортанник закрывает вход в гортань и предупреждает попадание в дыхательные пути пищи или жидкости. Координационная функция ЦНС принципиально важна для осуществления сложных движений, осуществляемых при участии множества мышц. Примерами таких движений могут быть артикуляция речи, акт глотания, гимнастические движения, требующие согласованного сокращения и расслабления множества мышц.

Принципы координационной деятельности

  • Реципрокность — взаимное торможение антагонистических групп нейронов (мотонейроны сгибателей и разгибателей)
  • Конечный нейрон — активация эфферентного нейрона с различных рецептивных полей и конкурентная борьба между различными афферентными импульсациями за данный мотонейрон
  • Переключения — процесс перехода активности с одного нервного центра на нервный центр антагонист
  • Индукция — смена возбуждения торможением или наоборот
  • Обратная связь — механизм, обеспечивающий необходимость сигнализации от рецепторов исполнительных органов для успешной реализации функции
  • Доминанта — стойкий главенствующий очаг возбуждения в ЦНС, подчиняющий себе функции других нервных центров.

В основе координационной деятельности центральной нервной системы лежит ряд принципов.

Принцип конвергенции реализуется в конвергентных цепях нейронов, в которых на один из них (обычно эфферентный) сходятся или конвергируют аксоны ряда других. Конвергенция обеспечивает поступление к одному и тому же нейрону сигналов от различных нервных центров или рецепторов различных модальностей (различных органов чувств). На основе конвергенции самые разные раздражители могут вызвать однотипную реакцию. Например, сторожевой рефлекс (поворот глаз и головы — настораживание) может быть вызван и световым, и звуковым, и тактильным воздействием.

Принцип общего конечного пути вытекает из принципа конвергенции и близок по своей сути. Под ним понимают возможность осуществления одной и той же реакции, запускаемой конечным в иерархической нервной цепи эфферентным нейроном, на который конвергируют аксоны множества других нервных клеток. Примером классического конечного пути являются мотонейроны передних рогов спинного мозга или двигательных ядер черепных нервов, которые своими аксонами непосредственно иннервируют мышцы. Одна и та же двигательная реакция (например сгибание руки) может запускаться путем поступления к этим нейронам импульсов от пирамидных нейронов первичной двигательной коры, нейронов ряда моторных центров ствола мозга, интернейронов спинного мозга, аксонов чувствительных нейронов спинальных ганглиев в ответ на действие сигналов, воспринятых разными органами чувств (на световое, звуковое, гравитационное, болевое или механическое воздействие).

Принцип дивергенции реализуется в дивергентных цепях нейронов, в которых один из нейронов имеет ветвящийся аксон, и каждая из ветвей образует синапс с другой нервной клеткой. Эти цепи выполняют функции одновременной передачи сигналов от одного нейрона на многие другие нейроны. Благодаря дивергентным связям происходит широкое распространение (иррадиация) сигналов и быстрое вовлечение в ответную реакцию многих центров, расположенных на разных уровнях ЦНС.

Принцип обратной связи (обратной афферентации) заключается в возможности передачи по афферентным волокнам информации об осуществляемой реакции (например, о движении от проприорецепторов мышц) обратно в нервный центр, который ее запускал. Благодаря обратной связи формируется замкнутая нейронная цепь (контур), через которую можно контролировать ход исполнения реакции, регулировать силу, продолжительность и другие параметры реакции, если они не были реализованы.

Участие обратной связи можно рассмотреть на примере реализации сгибательного рефлекса, вызываемого механическим воздействием на рецепторы кожи (рис. 5). При рефлекторном сокращении мышцы-сгибателя изменяется активность проприорецепторов и частота посылки нервных импульсов по афферентным волокнам к а-мотонейронам спинного мозга, иннервирующим эту мышцу. В результате формируется замкнутый контур регулирования, в котором роль канала обратной связи выполняют афферентные волокна, передающие информацию о сокращении в нервные центры от рецепторов мышц, а роль канала прямой связи — эфферентные волокна мотонейронов, идущие к мышцам. Таким образом, нервный центр (его мотонейроны) получает информацию об изменении состояния мышцы, вызванном передачей импульсов по двигательным волокнам. Благодаря обратной связи образуется своеобразное регуляторное нервное кольцо. Поэтому некоторые авторы предпочитают вместо термина «рефлекторная дуга» применять термин «рефлекторное кольцо».

Наличие обратной связи имеет важное значение в механизмах регуляции кровообращения, дыхания, температуры тела, поведенческих и других реакций организма и рассматривается далее в соответствующих разделах.

Рис. 5. Схема обратной связи в нейронных цепях простейших рефлексов

Принцип реципрокных отношений реализуется при взаимодействии между нервными центрами-антагонистами. Например, между группой моторных нейронов, контролирующих сгибание руки, и группой моторных нейронов, контролирующих разгибание руки. Благодаря реципрокным отношениям возбуждение нейронов одного из антагонистических центров сопровождается торможением другого. В приведенном примере реципрокные отношения между центрами сгибания и разгибания проявятся тем, что во время сокращения мышц- сгибателей руки будет происходить эквивалентное расслабление разгибателей, и наоборот, что обеспечивает плавность сгибательных и разгибательных движений руки. Реципрокные отношения осуществляются за счет активации нейронами возбужденного центра тормозных вставочных нейронов, аксоны которых образуют тормозные синапсы на нейронах антагонистического центра.

Принцип доминанты также реализуется на основе особенностей взаимодействия между нервными центрами. Нейроны доминирующего, наиболее активного центра (очага возбуждения) обладают стойкой высокой активностью и подавляют возбуждение в других нервных центрах, подчиняя их своему влиянию. Более того, нейроны доминирующего центра притягивают к себе афферентные нервные импульсы, адресуемые к другим центрам, и усиливают свою активность за счет поступления этих импульсов. Доминантный центр может длительно находиться в состоянии возбуждения без признаков утомления.

Примером состояния, обусловленного наличием в центральной нервной системе доминантного очага возбуждения, может служить состояние после пережитого человеком важного для него события, когда все его мысли и действия так или иначе становятся связанными с этим событием.

Свойства доминанты

  • Повышенная возбудимость
  • Стойкость возбуждения
  • Инертность возбуждения
  • Способность к подавлению субдоминантных очагов
  • Способность к суммированию возбуждений

Рассмотренные принципы координации могут использоваться, в зависимости от координируемых ЦНС процессов порознь или вместе в различных сочетаниях.

Похожие статьи

© 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.