Решение показательных систем. Системы показательных уравнений и неравенств

На этапе подготовки к заключительному тестированию учащимся старших классов необходимо подтянуть знания по теме «Показательные уравнения». Опыт прошлых лет свидетельствует о том, что подобные задания вызывают у школьников определенные затруднения. Поэтому старшеклассникам, независимо от уровня их подготовки, необходимо тщательно усвоить теорию, запомнить формулы и понять принцип решения таких уравнений. Научившись справляться с данным видом задач, выпускники смогут рассчитывать на высокие баллы при сдаче ЕГЭ по математике.

Готовьтесь к экзаменационному тестированию вместе со «Школково»!

При повторении пройденных материалов многие учащиеся сталкиваются с проблемой поиска нужных для решения уравнений формул. Школьный учебник не всегда находится под рукой, а отбор необходимой информации по теме в Интернете занимает долгое время.

Образовательный портал «Школково» предлагает ученикам воспользоваться нашей базой знаний. Мы реализуем совершенно новый метод подготовки к итоговому тестированию. Занимаясь на нашем сайте, вы сможете выявить пробелы в знаниях и уделить внимание именно тем заданиям, которые вызывают наибольшие затруднения.

Преподаватели «Школково» собрали, систематизировали и изложили весь необходимый для успешной сдачи ЕГЭ материал в максимально простой и доступной форме.

Основные определения и формулы представлены в разделе «Теоретическая справка».

Для лучшего усвоения материала рекомендуем попрактиковаться в выполнении заданий. Внимательно просмотрите представленные на данной странице примеры показательных уравнений с решением, чтобы понять алгоритм вычисления. После этого приступайте к выполнению задач в разделе «Каталоги». Вы можете начать с самых легких заданий или сразу перейти к решению сложных показательных уравнений с несколькими неизвестными или . База упражнений на нашем сайте постоянно дополняется и обновляется.

Те примеры с показателями, которые вызвали у вас затруднения, можно добавить в «Избранное». Так вы можете быстро найти их и обсудить решение с преподавателем.

Чтобы успешно сдать ЕГЭ, занимайтесь на портале «Школково» каждый день!

На данном уроке мы рассмотрим решение более сложных показательных уравнений, вспомним основные теоретические положения касательно показательной функции.

1. Определение и свойства показательной функции, методика решения простейших показательных уравнений

Напомним определение и основные свойства показательной функции. Именно на свойствах базируется решение всех показательных уравнений и неравенств.

Показательная функция - это функция вида , где основание степени и Здесь х - независимая переменная, аргумент; у - зависимая переменная, функция.


Рис. 1. График показательной функции

На графике показаны возрастающая и убывающая экспоненты, иллюстрирующие показательную функцию при основании большем единицы и меньшем единицы, но большим нуля соответственно.

Обе кривые проходят через точку (0;1)

Свойства показательной функции :

Область определения: ;

Область значений: ;

Функция монотонна, при возрастает, при убывает.

Монотонная функция принимает каждое свое значение при единственном значении аргумента.

При когда аргумент возрастает от минус до плюс бесконечности, функция возрастает от нуля не включительно до плюс бесконечности. При наоборот, когда аргумент возрастает от минус до плюс бесконечности, функция убывает от бесконечности до нуля не включительно.

2. Решение типовых показательных уравнений

Напомним, как решать простейшие показательные уравнения. Их решение основано на монотонности показательной функции. К таким уравнениям сводятся практически все сложные показательные уравнения.

Равенство показателей степени при равных основаниях обусловлено свойством показательной функции, а именно ее монотонностью.

Методика решения:

Уравнять основания степеней;

Приравнять показатели степеней.

Перейдем к рассмотрению более сложных показательных уравнений, наша цель - свести каждое из них к простейшему.

Освободимся от корня в левой части и приведем степени к одинаковому основанию:

Для того чтобы свести сложное показательное уравнение к простейшим, часто используется замена переменных.

Воспользуемся свойством степени:

Вводим замену. Пусть , тогда

Умножим полученное уравнение на два и перенесем все слагаемые в левую часть:

Первый корень не удовлетворяет промежутку значений у, отбрасываем его. Получаем:

Приведем степени к одинаковому показателю:

Вводим замену:

Пусть , тогда . При такой замене очевидно, что у принимает строго положительные значения. Получаем:

Решать подобные квадратные уравнения мы умеем, выпишем ответ:

Чтобы удостовериться в правильности нахождения корней, можно выполнить проверку по теореме Виета, т. е. найти сумму корней и их произведение и сверить с соответствующими коэффициентами уравнения.

Получаем:

3. Методика решения однородных показательных уравнений второй степени

Изучим следующий важный тип показательных уравнений:

Уравнения такого типа называют однородными второй степени относительно функций f и g. В левой его части стоит квадратный трехчлен относительно f с параметром g или квадратный трехчлен относительно g с параметром f.

Методика решения:

Данное уравнение можно решать как квадратное, но легче поступить по-другому. Следует рассмотреть два случая:

В первом случае получаем

Во втором случае имеем право разделить на старшую степень и получаем:

Следует ввести замену переменных , получим квадратное уравнение относительно у:

Обратим внимание, что функции f и g могут быть любыми, но нас интересует тот случай, когда это показательные функции.

4. Примеры решения однородных уравнений

Перенесем все слагаемые в левую часть уравнения:

Поскольку показательные функции приобретают строго положительные значения, имеем право сразу делить уравнение на , не рассматривая случай, когда :

Получаем:

Вводим замену: (согласно свойствам показательной функции)

Получили квадратное уравнение:

Определяем корни по теореме Виета:

Первый корень не удовлетворяет промежутку значений у, отбрасываем его, получаем:

Воспользуемся свойствами степени и приведем все степени к простым основаниям:

Несложно заметить функции f и g:

«Неравенства с одной переменной» - В учении нельзя останавливаться. Укажите наибольшее целое число, принадлежащее промежутку. На примерах учимся. Решением неравенства с одной переменной называется значение переменной. Линейное неравенство. Найди ошибку. Неравенства. Цели урока. Решить неравенство – значит найти все его решения. Историческая справка.

«Алгоритм решения неравенств» - Функция. Задача. Случай. Множество решений. Решение неравенств. Неравенства. Решение неравенства. Рассмотрим дискриминант. Решим неравенство методом интервалов. Простейшее линейное неравенство. Алгоритм решения неравенств. Ось. Теперь решим квадратное неравенство.

«Логарифмические уравнения и неравенства» - Выясните, положительным или отрицательным является число. Цель урока. Решите уравнение. Свойства логарифмов. Логарифмы. Формулы перехода к новому основанию. Отработка навыков при решении логарифмических уравнений и неравенств. Определение логарифма. Вычислите. Укажите ход решения следующих уравнений.

«Доказательство неравенств» - Применение метода математической индукции. Для n=3 получим. Доказать, что для любых n ? N Доказательство. по теореме Бернулли, что и требовалось. Но,что явно доказывает, что наше предположение неверно. Метод основан на свойстве неотрицательности квадратного трехчлена, если и. Неравенство Коши - Буняковского.

«Решение неравенств методом интервалов» - Решение неравенств методом интервалов. 2. Алгоритм решения неравенства методом интервалов. Дан график функции: Решите неравенство:

«Решение иррациональных уравнений и неравенств» - Посторонние корни. Набор задач. Внесите множитель под знак корня. Работа с задачей. Иррациональные уравнения и неравенства. Актуализация знаний. Иррациональное уравнение. Определение. Выбрать те, которые являются иррациональными. Иррациональные уравнения. При каких значениях А верно равенство. Иррациональные неравенства.

Способы решения систем уравнений

Для начала кратко вспомним, какие вообще существуют способы решения систем уравнений.

Существуют четыре основных способа решения систем уравнений:

    Способ подстановки: берется любое из данных уравнений и выражается $y$ через $x$, затем $y$ подставляется в уравнение системы, откуда и находится переменная $x.$ После этого мы легко можем вычислить переменную $y.$

    Способ сложения: в данном способе необходимо умножать одно или оба уравнения на такие числа, чтобы при сложении вместе обоих одна из переменных «исчезла».

    Графический способ: оба уравнения системы изображается на координатной плоскости и находится точка их пересечения.

    Способ введения новых переменных: в этом способе мы делаем замену каких-либо выражений для упрощения системы, а потом применяем один из выше указанных способов.

Системы показательных уравнений

Определение 1

Системы уравнений, состоящие из показательных уравнений, называются системой показательных уравнений.

Решение систем показательных уравнений будем рассматривать на примерах.

Пример 1

Решить систему уравнений

Рисунок 1.

Решение.

Будем пользоваться первым способом для решения данной системы. Для начала выразим в первом уравнении $y$ через $x$.

Рисунок 2.

Подставим $y$ во второе уравнение:

\ \ \[-2-x=2\] \ \

Ответ: $(-4,6)$.

Пример 2

Решить систему уравнений

Рисунок 3.

Решение.

Данная система равносильна системе

Рисунок 4.

Применим четвертый метод решения уравнений. Пусть $2^x=u\ (u >0)$, а $3^y=v\ (v >0)$, получим:

Рисунок 5.

Решим полученную систему методом сложения. Сложим уравнения:

\ \

Тогда из второго уравнения, получим, что

Возвращаясь к замене, получил новую систему показательных уравнений:

Рисунок 6.

Получаем:

Рисунок 7.

Ответ: $(0,1)$.

Системы показательных неравенств

Определение 2

Cистемы неравенств, состоящие из показательных уравнений, называются системой показательных неравенств.

Решение систем показательных неравенств будем рассматривать на примерах.

Пример 3

Решить систему неравенств

Рисунок 8.

Решение:

Данная система неравенств равносильна системе

Рисунок 9.

Для решения первого неравенства вспомним следующую теорему равносильности показательных неравенств:

Теорема 1. Неравенство $a^{f(x)} >a^{\varphi (x)} $, где $a >0,a\ne 1$ равносильна совокупности двух систем

\}

Похожие статьи

© 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.