Понятия энтальпии и энтропии. Основные понятия и законы химии

Энтальпия против энтропии

Любопытство - это один аспект человека, который помогает ему открывать различные явления в мире. Один человек смотрит на небо и задается вопросом, как образуется дождь. Один человек смотрит на землю и задается вопросом, как растения могут расти. Это повседневное явление, с которым мы сталкиваемся в нашей жизни, но те люди, которые недостаточно любознательны, никогда не пытаются найти ответы, почему такие явления существуют. Биологов, химиков и физиков всего лишь несколько человек, которые пытаются найти ответы. Наш современный мир сегодня интегрирован с такими законами науки, как термодинамика. «Термодинамика» - это отрасль естествознания, которая включает изучение внутренних движений систем организма. Это исследование, посвященное взаимосвязи тепла с различными формами энергии и работы. Применения термодинамики проявляются в потоке электричества и от простого поворота и поворота винта и других простых машин. Пока задействованы тепло и трение, существует термодинамика. Двумя наиболее распространенными принципами термодинамики являются энтальпия и энтропия. В этой статье вы узнаете больше о различиях между энтальпией и энтропией.

В термодинамической системе мера ее полной энергии называется энтальпией. Для создания термодинамической системы требуется внутренняя энергия. Эта энергия служит толчком или триггером для создания системы. Единицей измерения энтальпии является джоуль (Международная система единиц) и калория (Британская тепловая единица). «Энтальпия» - это греческое слово «энтальпос» (чтобы влить тепло). Heike Kamerlingh Onnes был человеком, который придумал это слово, в то время как Альфред У. Портер был тем, кто обозначил символ «H» для «энтальпии». В биологических, химических и физических измерениях энтальпия является наиболее предпочтительным выражением для изменений энергии системы, поскольку она имеет возможность упростить конкретные определения передачи энергии. Невозможно достичь значения для общей энтальпии, потому что общая энтальпия системы не может быть непосредственно измерена. Только изменение энтальпии является предпочтительным измерением количества, а не абсолютной величиной энтальпии. В эндотермических реакциях наблюдается положительное изменение энтальпии, а при экзотермических реакциях происходит отрицательное изменение энтальпии. Проще говоря, энтальпия системы эквивалентна сумме не механической работы и подаваемого тепла. При постоянном давлении энтальпия эквивалентна изменению внутренней энергии системы и работе, которую система проявила к ее окружению. Другими словами, тепло может поглощаться или выделяться определенной химической реакцией в таких условиях.

«Энтропия» - второй закон термодинамики. Это один из самых фундаментальных законов в области физики. Это важно для понимания жизни и познания. Это рассматривается как Закон Беспорядка. В середине прошлого века «энтропия» уже была сформулирована с обширными усилиями Клаузиуса и Томсона. Клаузиус и Томсон были вдохновлены наблюдением Карно потоком, который превращает мельничное колесо. Карно заявил, что термодинамика - это поток тепла от более высоких до более низких температур, что делает работу парового двигателя. Клаузиус был тем, кто придумал термин «энтропия». Символом энтропии является «S», который гласит, что мир считается неотъемлемо активным, когда он действует спонтанно, чтобы рассеять или минимизировать наличие термодинамической силы.

    «Энтальпия» - это передача энергии, а «энтропия» - это Закон Беспорядка.

    Энтальпия берет символ «H», а энтропия принимает символ «S».

    Хайке Камерлингх Оннес придумал термин «энтальпия», а Клаузиус придумал термин «энтропия».

Энтальпи́я, также тепловая функция и теплосодержание - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.

Определением этой величины служит тождество: H=U+PV

Размерность энтальпии-Дж/моль.

В химии чаще всего рассматривают изобарические процессы (P = const), и тепловой эффект в этом случае называют изменением энтальпии системы или энтальпией процесса :

В термодинамической системе выделяющуюся теплоту химического процесса условились считать отрицательной (экзотермический процесс, ΔH < 0), а поглощение системой теплоты соответствует эндотермическому процессу, ΔH > 0.

Энтропия

а для самопроизвольных

Зависимость изменения энтропии от температуры выражается законом Кирхгофа:

Для изолированной системы изменение энтропии – критерий возможности самопроизвольного протекания процесса. Если , то процесс возможен; если, то в прямом направлении процесс невозможен; если, то в системе равновесие.

Термодинамические потенциалы. Свободная энергия Гиббса и Гельмгольца.

Дл я характеристики процессов, протекающих в закрытых системах, введем новые термодинамические функции состояния: изобарно-изотермический потенциал (свободная энергия Гиббса G) и изохорно-изотермический потенциал (свободная энергия Гельмгольца F).

Для закрытой системы, в которой осуществляется равновесный процесс при постоянных температуре и объеме, выразим работу данного процесса. Которую обозначим А max (посколько работа процесса, проводимого равновесно, максимальна):

A max =T∆S-∆U

Введем функцию F=U-TS-изохорно-изотермический потенциал, определяющий направление и предел самопроизвольного протекания процесса в закрытой системе, находящейся в изохорно-изотермических условиях и получим:

Изменение энергии Гельмгольца определяется только начальным и конечным состоянием системы и не зависит от характера процесса, поскольку оно определяется двумя функциями состояния: U и S. Напомним, что от способа проведения процесса при переходе системы из начального в конечное состояние может зависеть величина полученной или затраченной работы, но не изменение функции.

Закрытую систему, находящуюся в изобарно- изотермических условиях, характеризует изобарно-изотермический потенциал G:

Дифференциалэнергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных - черездавлениеp итемпературуT:

Для системы с переменным числом частиц этот дифференциал записывается так:

Здесь -химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

Анализ уравнения ∆G=∆H-T∆S позволяет установить, какой из факторов, составляющих энергию Гиббса, ответственен за направление протекания химической реакции, энтальпийный (ΔH) или энтропийный (ΔS · T).

Если ΔH < 0 и ΔS > 0, то всегда ΔG < 0 и реакция возможна при любой температуре.

Если ΔH > 0 и ΔS < 0, то всегда ΔG > 0, и реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях.

В остальных случаях (ΔH < 0, ΔS < 0 и ΔH > 0, ΔS > 0) знак ΔG зависит от соотношения ΔH и TΔS. Реакция возможна, если она сопровождается уменьшением изобарного потенциала; при комнатной температуре, когда значение T невелико, значение TΔS также невелико, и обычно изменение энтальпии больше TΔS. Поэтому большинство реакций, протекающих при комнатной температуре, экзотермичны. Чем выше температура, тем больше TΔS, и даже эндотермические реакции становятся осуществляемыми.

Под стандартной энергией Гиббса образования ΔG°, понимают изменение энергии Гиббса при реакции образования 1 моль вещества, находящегося в стандартном состоянии. Это определение подразумевает, что стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю.

Изменение энергии Гиббса не зависит от пути процесса, следовательно можно получать разные неизвестные значения энергий Гиббса образования из уравнений, в которых с одной стороны записанны суммы энергий продуктов реакции, а с другой - суммы энергий исходных веществ.

При пользовании значениями стандартной энергии Гиббса критерием принципиальной возможности процесса в нестандартных условиях принимается условие ΔG° < 0, а критерием принципиальной невозможности - условие ΔG° > 0. В то же время, если стандартная энергия Гиббса равна нулю, это не означает, что в реальных условиях (отличных от стандартных) система будет в равновесии.

Условия самопроизвольного протекания процессов в закрытый системах:

Энтальпия - это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

Энтальпия - это термодинамическое свойство вещества, которое указывает уровень энергии , сохраненной в его молекулярной структуре. Это значит, что, хотя вещество может обладать энергией на основании , не всю ее можно преобразовать в теплоту. Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру. Часть вещества недоступна, когда его температура приближается к температуре окружающей среды. Следовательно, энтальпия - это количество энергии, которая доступна для преобразования в теплоту при определенной температуре и давлении. Единицы энтальпии - британская тепловая единица или джоуль для энергии и Btu/lbm или Дж/кг для удельной энергии.

Количество энтальпии

Количество энтальпии вещества основано на его данной температуре. Данная температура - это значение, которая выбрано учеными и инженерами, как основание для вычислений. Это температура, при которой энтальпия вещества равна нулю Дж. Другими словами, у вещества нет доступной энергии, которую можно преобразовать в теплоту. Данная температура у различных веществ разная. Например, данная температура воды - это тройная точка (О °С), азота −150°С, а хладагентов на основе метана и этана −40°С.

Если температура вещества выше его данной температуры или изменяет состояние на газообразное при данной температуре, энтальпия выражается положительным числом. И наоборот при температуре ниже данной энтальпия вещества выражается отрицательным числом. Энтальпия используется в вычислениях для определения разницы уровней энергии между двумя состояниями. Это необходимо для настройки оборудования и определения полезного действия процесса.

Энтальпию часто определяют как полную энергию вещества , так как она равна сумме его внутренней энергии (и) в данном состоянии наряду с его способностью проделать работу (pv). Но в действительности энтальпия не указывает полную энергию вещества при данной температуре выше абсолютного нуля (-273°С). Следовательно, вместо того, чтобы определять энтальпию как полную теплоту вещества, более точно определять ее как общее количество доступной энергии вещества, которое можно преобразовать в теплоту.
H = U + pV

При работе с какими-либо расчётами, вычислениями и выполнении прогноза разнообразных явлений, связанных с теплотехникой, каждый сталкивается с понятием энтальпия. Но для людей, специальность которых не касается теплоэнергетики или которые лишь поверхностно сталкиваются с подобными терминами, слово «энтальпия» будет наводить страх и ужас. Итак, давайте разберёмся, действительно ли всё так страшно и непонятно?

Если попытаться сказать совсем просто, под термином энтальпия понимается энергия, которая доступна для преобразования в теплоту при некотором постоянном давлении. Понятие энтальпия в переводе с греческого значит «нагреваю». То есть формулу, содержащую элементарную сумму внутренней энергии и произведенную работу, называют энтальпией. Эта величина обозначается буквой i.

Если записать вышесказанное физическими величинами, преобразовать и вывести формулу, то получится i = u + pv (где u – внутренняя энергия; p, u – давление и удельный объем рабочего тела в том же состоянии, для которого взято значение внутренней энергии). Энтальпия - аддитивная функция, т. е. энтальпия всей системы равна сумме всех составляющих её частей.

Термин «энтальпия» сложен и многогранен.

Но если постараться в нём разобраться, то всё пойдёт очень просто и понятно.

  • Во-первых, чтобы понять, что же такое энтальпия, стоит узнать общее определение, что мы и сделали.
  • Во-вторых, стоит найти мпеханизм появления этой физической единицы, понять, откуда она взялась.
  • В-третьих, нужно найти связь с другими физическими единицами, которые неразрывно с ними взаимосвязаны.
  • И, наконец, в-четвёртых, нужно посмотреть примеры и формулу.

Ну, что же, механизм работы понятен. Вам лишь нужно внимательно читать и вникать. С термином «Энтальпии» мы уже разобрались, также привели и его формулу. Но тут же возникает ещё один вопрос: откуда взялась эта формула и почему энтропия связана, к примеру, с внутренней энергией и давлением?

Суть и смысл

Для того, чтобы попытаться выяснить физический смысл понятия «энтальпия» нужно знать первый закон термодинамики:

энергия не исчезает в никуда и не возникает из ничего, а лишь переходит из одного вида в другой в одинаковых количествах. Таким примером может служить переход теплоты (тепловой энергии) в механическую энергию, и наоборот.

Уравнение первого закона термодинамики нам нужно преобразить в вид dq = du + pdv = du + pdv + vdp – vdp = d(u + pv) – vdp. Отсюда мы видим выражение (u + pv). Именно это выражение и называется энтальпией (полная формула приводилась выше).

Энтальпия также является величиной состояния, потому что составляющие u (напряжение) и p (давление), v (удельный объём) имеют для каждой величины определенные значения. Зная это, первый закон термодинамики возможно переписать в виде: dq = di – vdp.

В технической термодинамике используются значения энтальпии, которые высчитываются от условно принятого нуля. Все абсолютные значения этих величин весьма трудно определить, так как для этого необходимо учесть все составляющие внутренней энергии вещества при изменении его состояния от О к К.

Формулу и значения энтальпии привёл в 1909 г. учёный Г.Камерлинг-Оннесом.

В выражении i — удельная энтальпия, для всей массы тела полная энтальпия обозначается буквой I, по всемирной системе единиц энтальпия измеряется в Джоулях на килограмм и рассчитывается как:

Функции

Энтальпия («Э») является одной из вспомогательных функций, благодаря использованию которой можно значительно упростить термодинамический расчёт. Так например, огромное количество процессов подвода теплоты в теплоэнергетике (в паровых котлах или камере сгорания газовых турбин и реактивных двигателей, а также в теплообменных аппаратах) осуществляют при постоянном давлении. По этой причине в таблицах термодинамических свойств обычно приводят значения энтальпии.

Условие сохранения энтальпии лежит, в частности, в основе теории Джоуля - Томсона. Или эффекта, нашедшего важное практическое применение при сжижении газов. Таким образом, энтальпия есть полная энергия расширенной системы, представляющая сумму внутренней энергии и внешней – потенциальной энергии давления. Как любой параметр состояния, энтальпия может быть определена любой парой независимых параметров состояния.

Также, исходя из приведённых выше формул, можно сказать: «Э» химической реакции равна сумме энтальпий сгорания исходных веществ за вычетом суммы энтальпий сгорания продуктов реакции.
В общем случае изменение энергии термодинамической системы не является необходимым условием для изменения энтропии этой системы.

Итак, вот мы и разобрали понятие «энтальпии». Стоит отметить, что «Э» неразрывно связана с энтропией, о которой вы также можете прочесть позже.

Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции - отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Энтальпия , тепловая функция и теплосодержание - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.

Изменение энтальпии не зависит от пути процесса, определяясь только начальным и конечным состоянием системы. Если система каким-либо путём возвращается в исходное состояние (круговой процесс), то изменение любого её параметра, являющегося функцией состояния, равно нулю, отсюда ДH = 0

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

· Реакция должна протекать либо при постоянном объёме Q v (изохорный процесс), либо при постоянном давлении Q p (изобарный процесс ).

Молярная теплоёмкость при постоянном давлении обозначается как C p . В идеальном газе она связана с теплоёмкостью при постоянном объёме соотношением Майера C p = C v + R .

Молекулярно-кинетическая теория позволяет вычислить приблизительные значения молярной теплоёмкости для различных газов через значение универсальной газовой постоянной :

· для одноатомных газов, то есть около 20.8 Дж/(моль·К);

· для двухатомных газов, то есть около 29.1 Дж/(моль·К);

· для многоатомных газов C p = 4R , то есть около 33.3 Дж/(моль·К).

где теплоёмкость при постоянном давлении обозначается как C p

В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298 К = 25 ?С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ДH r O . В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Чтобы рассчитать температурную зависимость энтальпии реакции, необходимо знать мольные теплоемкости веществ, участвующих в реакции. Изменение энтальпии реакции при увеличении температуры от Т 1 до Т 2 рассчитывают по закону Кирхгофа (предполагается, что в данном интервале температур мольные теплоемкости не зависят от температуры и нет фазовых превращений ):

Если в данном интервале температур происходят фазовые превращения, то при расчёте необходимо учесть теплоты соответствующих превращений, а также изменение температурной зависимости теплоемкости веществ, претерпевших такие превращения:

где ДC p (T 1 , T f) - изменение теплоемкости в интервале температур от Т 1 до температуры фазового перехода; ДC p (T f , T 2) - изменение теплоемкости в интервале температур от температуры фазового перехода до конечной температуры, и T f - температура фазового перехода. Стандартная энтальпия сгорания

Стандартная энтальпия сгорания - ДH гор о, тепловой эффект реакции сгорания одного моля вещества в кислороде до образования оксидов в высшей степени окисления. Теплота сгорания негорючих веществ принимается равной нулю.

Стандартная энтальпия растворения - ДH раств о, тепловой эффект процесса растворения 1 моля вещества в бесконечно большом количестве растворителя. Складывается из теплоты разрушения кристаллической решетки и теплоты гидратации (или теплоты сольватации для неводных растворов), выделяющейся в результате взаимодействия молекул растворителя с молекулами или ионами растворяемого вещества с образованием соединений переменного состава - гидратов (сольватов). Разрушение кристаллической решетки, как правило, эндотермический процесс - ДH реш > 0, а гидратация ионов - экзотермический, ДH гидр < 0. В зависимости от соотношения значений ДH реш и ДH гидр энтальпия растворения может иметь как положительное, так и отрицательное значение. Так растворение кристаллического гидроксида калия сопровождается выделением тепла:

ДH раствKOH о = ДH реш о + ДH гидрК +о + ДH гидрOH -о = ?59 КДж/моль

Под энтальпией гидратации - ДH гидр, понимается теплота, которая выделяется при переходе 1 моля ионов из вакуума в раствор.

Теплоемкость с P , c V [Дж. моль -1. К -1 , кал. моль -1. К -1 ]

Истинная молярная теплоемкость:

при V = const c V =; P = const c P =.

Средняя молярная теплоемкость численно равна теплоте, которую надо сообщить одному молю вещества, чтобы нагреть его на 1 К: .

Теплоемкости при постоянном давлении или объеме связаны равенством

для идеального газа ;

для крист. вещества (, T - термические коэффициенты).

Температурная зависимость теплоемкости многих одноатомных кристаллов при T < q D /12 описывается законом кубов Дебая (q D - характеристическая температура Дебая) c V = aT 3 , при T c V 3R. В области средних температур применяют различные степенные полиномы (см., напр., закон Кирхгофа).

Правило Дюлонга и Пти : атомная теплоемкость при V = const для любого простого кристаллического вещества приблизительно равна с V 3R (т.е. 25 Дж. моль -1. К -1).

Правило аддитивности: (с P,i - теплоемкость составляющих соединение структурных фрагментов, напр., атомов или групп атомов).

Теплота [Дж. моль -1 , кал. моль -1 ] Q - форма передачи энергия от более нагретого тела к менее нагретому, не связанная с переносом вещества и совершением работы.

Теплота химической реакции при постоянном объеме или давлении (т.е. тепловой эффект химической реакции) не зависит от пути проведения процесса, а определяется только начальным и конечным состоянием системы (закон Гесса):

= U, = H.

Разность тепловых эффектов при P = const (Q P) и V = const (Q V) равна работе, которая совершается системой (V>0) или над системой (V<0) за счет изменения ее объема при завершении изобарно-изотермической реакции:

- = n RT.

Стандартная теплота реакции может быть рассчитана через стандартные теплоты образования () или сгорания () веществ:

где n i,j - стехиометрические коэффициенты в уравнении химической реакции.

Для идеальных газов при T, P = const: r H = r U + n RT.

Зависимость теплового эффекта химической реакции от температуры определяется законом Кирхгофа .

= = , = = ,

т.е. влияние температуры на тепловой эффект реакции обусловлено разностью теплоемкостей продуктов реакции и исходных веществ c учетом стехиометрических коэффициентов:

При P = const:

энтальпия термодинамический энтропия давление

Если температурная зависимость c P аппроксимирована уравнением

= a + b . T + c . , то

H(T 2 ) = H(T 1 )+ а . .

Теплота адсорбции - отнесенная к одному молю вещества теплота, которая выделяется при его адсорбции. Адсорбция - всегда экзотермический процесс (Q > 0). При постоянной адсорбции (Г, q = const):

Величина Q является косвенным критерием определения типа адсорбции: если Q < 30 40 кДж/моль) - физическая адсорбция, Q > 40 кДж/моль - хемосорбция.

Теплота образования - изобарный тепловой эффект химической реакции образования данного химического соединения из простых веществ, отнесенный к одному молю этого соединения. При этом считают, что простые вещества реагируют в той модификации и том агрегатном состоянии, которые устойчивы при данной температуре и давлении 1 атм.

Теплота сгорания (т.с.) - тепловой эффект сгорания 1 моля вещества и охлаждения продуктов реакции до первоначальной температуры смеси. Т.С., если не оговорено особо, отвечает сгоранию С до СО 2 , H 2 до H 2 O (ж.), для остальных веществ в каждом случае указывают продукты их окисления.

Теплота фазового перехода - теплота, поглощаемая (выделяемая) в результате равновесного перехода вещества из одной фазы в другую (см. переход фазовый).

Термодинамические переменные (т. п.) - величины, количественно выражающие термодинамические свойства. Т.П. разделяют на независимые переменные (измеряемые в опыте) и функции. Прим.: давление, температура, элементный химический состав - независимые т. п., энтропия, энергия - функции. Набором значений независимых переменных задается термодинамическое состояние системы (см. также ур-ние состояния). Переменные, которые фиксированы условиями существования системы, и, следовательно, не могут изменяться в пределах рассматриваемой задачи, называют термодинамическими параметрами.

Экстенсивные - т. п., пропорциональные количеству вещества или массе системы. Прим .: объем, энтропия, внутренняя энергия, энтальпия, энергии Гиббса и Гельмгольца, заряд, площадь поверхности.

Интенсивные - т. п., не зависящие от количества вещества или массы системы. Прим. : давление, термодинамическая температура, концентрации, мольные и удельные термодинамические величины, электрический потенциал, поверхностное натяжение. Экстенсивные т. п. складываются, интенсивные - выравниваются.

Похожие статьи

© 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.