Геометрическое изображение рациональных чисел. Геометрическое изображение действительных чисел

Комплексные числа

Основные понятия

Первоначальные данные о числе относятся к эпохе каменного века – палеомелита. Это «один», «мало» и «много». Записывались они в виде зарубок, узелков и т.д. Развитие трудовых процессов и появление собственности заставили человека изобрести числа и их названия. Первыми появились натуральные числа N , получаемые при счете предметов. Затем, наряду с необходимостью счета, у людей появилась потребность измерять длины, площади, объемы, время и другие величины, где приходилось учитывать и части употребляемой меры. Так возникли дроби. Формальное обоснование понятий дробного и отрицательного числа было осуществлено в 19 веке. Множество целых чисел Z – это натуральные числа, натуральные со знаком минус и нуль. Целые и дробные числа образовали совокупность рациональных чисел Q, но и она оказалась недостаточной для изучения непрерывно изменяющихся переменных величин. Бытие снова показало несовершенство математики: невозможность решить уравнение вида х 2 = 3, в связи с чем появились иррациональные числа I. Объединение множества рациональных чисел Q и иррациональных чисел I – множество действительных (или вещественных) чисел R . В итоге числовая прямая заполнилась: каждому действительному числу соответствовала на ней точка. Но на множестве R нет возможности решить уравнение вида х 2 = – а 2 . Следовательно, снова возникла необходимость расширения понятия числа. Так в 1545 году появились комплексные числа. Их создатель Дж. Кардано называл их «чисто отрицательными». Название «мнимые» ввел в 1637 году француз Р. Декарт, в 1777 году Эйлер предложил использовать первую букву французского числа i для обозначения мнимой единицы. Этот символ вошел во всеобщее употребление благодаря К. Гауссу.

В течение 17 – 18 веков продолжалось обсуждение арифметической природы мнимостей, их геометрического истолкования. Датчанин Г. Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изображать комплексное число точкой на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой, а вектором, идущим в эту точку из начала координат.

Лишь к концу 18 – началу 19 века комплексные числа заняли достойное место в математическом анализе. Первое их использование – в теории дифференциальных уравнений и в теории гидродинамики.

Определение 1. Комплексным числом называется выражение вида , где x и y – действительные числа, а i – мнимая единица, .

Два комплексных числа и равны тогда и только тогда, когда , .

Если , то число называют чисто мнимым ; если , то число является действительным числом, это означает, что множество R С , где С – множество комплексных чисел.

Сопряженным к комплексному числу называется комплексное число .

Геометрическое изображение комплексных чисел.

Любое комплексное число можно изобразить точкой М (x , y ) плоскости Oxy. Парой действительных чисел обозначаются и координаты радиус-вектора , т.е. между множеством векторов на плоскости и множеством комплексных чисел можно установить взаимно-однозначное соответствие: .

Определение 2. Действительной частью х .

Обозначение:x = Rez (от латинского Realis).

Определение 3. Мнимой частью комплексного числа называется действительное число y .

Обозначение: y = Imz (от латинского Imaginarius).

Rez откладывается на оси (Ох) , Imz откладывается на оси (Оy ), тогда вектор , соответствующий комплексному числу – это радиус-вектор точки М (x , y ), (или М (Rez , Imz )) (рис. 1).

Определение 4. Плоскость, точкам которой поставлено в соответствие множество комплексных чисел, называется комплексной плоскостью . Ось абсцисс называется действительной осью , так как на ней лежат действительные числа . Ось ординат называется мнимой осью , на ней лежат чисто мнимые комплексные числа . Множество комплексных чисел обозначается С .

Определение 5. Модулем комплексного числа z = (x , y ) называется длина вектора : , т.е. .

Определение 6. Аргументом комплексного числа называется угол между положительным направлением оси (Ох ) и вектором : .

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА II

§ 44 Геометрическое изображение действительных чисел

Геометрически действительные числа, так же как и рациональные числа, изображаются точками прямой.

Пусть l - произвольная прямая, а О - некоторая ее точка (рис. 58). Каждому положительному действительному числу α поставим в соответствие точку А, лежащую справа от О на расстоянии в α единиц длины.

Если, например, α = 2,1356..., то

2 < α < 3
2,1 < α < 2,2
2,13 < α < 2,14

и т. д. Очевидно, что точка А в этом случае должна находиться на прямой l правее точек, соответствующих числам

2; 2,1; 2,13; ... ,

но левее точек, соответствующих числам

3; 2,2; 2,14; ... .

Можно показать, что эти условия определяют на прямой l единственную точку А, которую мы и рассматриваем как геометрический образ действительного числа α = 2,1356... .

Аналогично, каждому отрицательному действительному числу β поставим в соответствие точку В, лежащую слева от О на расстоянии в | β | единиц длины. Наконец, числу «нуль» поставим в соответствие точку О.

Так, число 1 изобразится на прямой l точкой А, находящейся справа от О на расстоянии в одну единицу длины (рис. 59), число - √2 - точкой В, лежащей слева от О на расстоянии в √2 единиц длины, и т. д.

Покажем, как на прямой l с помощью циркуля и линейки можно отыскать точки, соответствующие действительным числам √2 , √3 , √4 , √5 и т. д. Для этого прежде всего покажем, как можно построить отрезки, длины которых выражаются этими числами. Пусть АВ есть отрезок, принятый за единицу длины (рис. 60).

В точке А восставим к этому отрезку перпендикуляр и отложим на нем отрезок АС, равный отрезку АВ. Тогда, применяя теорему Пифагора к прямоугольному треугольнику ABC, получим; ВС = √АВ 2 + АС 2 = √1+1 = √2

Следовательно, отрезок ВС имеет длину √2 . Теперь восставим перпендикуляр к отрезку ВС в точке С и выберем на нем точку D так, чтобы отрезок CD был равен единице длины АВ. Тогда из прямоугольною треугольника BCD найдем:

ВD = √ВC 2 + СD 2 = √2+1 = √3

Следовательно, отрезок BD имеет длину √3 . Продолжая описанный процесс дальше, мы могли бы получить отрезки BE, BF, ..., длины которых выражаются числами √4 , √5 и т. д.

Теперь на прямой l легко найти те точки, которые служат геометрическим изображением чисел √2 , √3 , √4 , √5 и т. д.

Откладывая, например, справа от точки О отрезок ВС (рис. 61), мы получим точку С, которая служит геометрическим изображением числа √2 . Точно так же, откладывая справа от точки О отрезок BD, мы получим точку D", которая является геометрическим образом числа √3 , и т. д.

Не следует, однако, думать, что с помощью циркуля и линейки на числовой прямой l можно найти точку, соответствующую любому заданному действительному числу. Доказано, например, что, имея в своем распоряжении только циркуль и линейку, нельзя построить отрезок, длина которого выражается числом π = 3,14 ... . Поэтому на числовой прямой l с помощью таких построений нельзя указать точку, соответствующую этому числу Тем не менее такая точка существует.

Итак, каждому действительному числу α можно поставить в соответствие некоторую вполне определенную точку прямой l . Эта точка будет отстоять от начальной точки О на расстоянии в | α | единиц длины и находиться справа от О, если α > 0, и слева от О, если α < 0. Очевидно, что при этом двум неравным действительным числам будут соответствовать две различные точки прямой l . В самом деле, пусть числу α соответствует точка А, а числу β - точка В. Тогда, если α > β , то А будет находиться правее В (рис. 62, а); если же α < β , то А будет лежать левее В (рис. 62,б).

Говоря в § 37 о геометрическом изображении рациональных чисел, мы поставили вопрос: любую ли точку прямой можно рассматривать как геометрический образ некоторого рационального числа? Тогда мы не могли дать ответ на этот вопрос; теперь же мы можем ответить на него вполне определенно. На прямой есть точки, которые служат геометрическим изображением иррациональных чисел (например, √2 ). Поэтому не всякая точка прямой изображает рациональное число. Но в таком случае напрашивается другой вопрос: любую ли точку числовой прямой можно рассматривать как геометрический образ некоторого действительного числа? Этот вопрос решается уже положительно.

В самом деле, пусть А - произвольная точка прямой l , лежащая справа от О (рис. 63).

Длина отрезка ОА выражается некоторым положительным действительным числом α (см § 41). Поэтому точка А является геометрическим образом числа α . Аналогично устанавливается, что каждая точка В, лежащая слева от О, может рассматриваться как геометрический образ отрицательного действительного числа - β , где β - длина отрезка ВО. Наконец, точка О служит геометрическим изображением числа нуль. Понятно, что две различные точки прямой l не могут быть геометрическим образом одного и того же действительного числа.

В силу изложенных выше причин прямая, на которой указана в качестве «начальной» некоторая точка О (при заданной единице длины), называется числовой прямой .

Вывод. Множество всех действительных чисел и множество всех точек числовой прямой находятся во взаимно однозначном соответствии.

Это означает, что каждому действительному числу соответствует одна, вполне определенная точка числовой прямой и, наоборот, каждой точке числовой прямой при таком соответствии отвечает одно, вполне определенное действительное число.

Упражнения

320. Выяснить, какая из двух точек находится на числовой прямой левее и какая правее, если эти точки соответствуют числам:

а) 1,454545... и 1,455454...; в) 0 и - 1,56673...;

б) - 12,0003... и - 12,0002...; г) 13,24... и 13,00....

321. Выяснить, какая из двух точек находится на числовой прямой дальше от начальной точки О, если эти точки соответствуют числам:

а) 5,2397... и 4,4996...; .. в) -0,3567... и 0,3557... .

г) - 15,0001 и - 15,1000...;

322. В этом параграфе было показано, что для построения отрезка длиной в √n с помощью циркуля и линейки можно поступить следующим образом: сначала построить отрезок длиной √2 , затем отрезок длиной √3 и т. д., пока не дойдем до отрезка длиной √n . Но при каждом фиксированном п > 3 этот процесс можно ускорить. Как бы, например, вы стали строить отрезок длиной √10 ?

323*. Как с помощью циркуля и линейки найти на числовой прямой точку, соответствующую числу 1 / α , если положение точки, соответствующей числу α , известно?

ГЛАВА 1. Переменные величины и функции

§1.1. Действительные числа
Первое знакомство с действительными числами происходит в школьном курсе математики. Всякое действительное число представляется конечной или бесконечной десятичной дробью.

Действительные (вещественные) числа делятся на два класса: класс рациональных и класс иррациональных чисел. Рациональными называются числа, которые имеют вид , где m и n – целые взаимно простые числа, но
. (Множество рациональных чисел обознается буквой Q ). Остальные действительные числа называются иррациональными . Рациональные числа представляются конечной или бесконечной периодической дробью (то же, что обыкновенные дроби), тогда иррациональными будут те и только те действительные числа, которые можно представить бесконечными непериодическими дробями.

Например, число
– рациональное, а
,
,
и т.п. – иррациональные числа.

Действительные числа можно также разделить на алгебраические - корни многочлена с рациональными коэффициентами (к ним относятся, в частности, все рациональные числа – корни уравнения
) – и на трансцендентные – все остальные (например, числа
и другие).

Множества всех натуральных, целых, действительных чисел обозначаются соответственно так: N Z , R
(начальные буквы слов Naturel, Zahl, Reel).

§1.2. Изображение действительных чисел на числовой оси. Интервалы

Геометрически (для наглядности) действительные числа изображают точками на бесконечной (в обе стороны) прямой линии, именуемой числовой осью . С этой целью на рассматриваемой прямой берётся точка (начало отсчёта – точка 0), указывается положительное направление, изображаемое стрелкой (обычно направо) и избирается единица масштаба, которую откладывают неограниченно в обе стороны от точки 0. Так изображаются целые числа. Чтобы изобразить число с одним десятичным знаком, надо каждый отрезок разделить на десять частей и т.д. Таким образом, каждое действительное число изобразится точкой на числовой оси. Обратно, каждой точке
соответствует действительное число, равное длине отрезка
и взятое со знаком «+» или «–», в зависимости от того, лежит ли точка правее или левее от начала отсчёта. Таким образом устанавливается взаимнооднозначное соответствие между множеством всех действительных чисел и множеством всех точек числовой оси. Термины «действительное число» и «точка числовой оси» употребляются как синонимы.

Символом будем обозначать и действительное число, и точку, ему соответствующую. Положительные числа располагаются правее точки 0, отрицательные – левее. Если
, то на числовой оси точка лежит левее точки . Пусть точке
соответствует число , тогда число называется координатой точки , пишут
; чаще саму точку обозначают той же буквой , что и число. Точка 0 – начало координат. Ось обозначают тоже буквой (рис.1.1).

Рис. 1.1. Числовая ось.
Совокупность всех чисел, лежащих между данными числами и называется интервалом или промежутком; концы и ему могут принадлежать, а могут и не принадлежать. Уточним это. Пусть
. Совокупность чисел , удовлетворяющих условию
, называется интервалом (в узком смысле) или открытым интервалом, обозначается символом
(рис.1.2).

Рис. 1.2. Интервал
Совокупность чисел таких, что
называется замкнутым интервалом (отрезок, сегмент) и обозначается через
; на числовой оси отмечается так:

Рис. 1.3. Замкнутый интервал
От открытого промежутка он отличается лишь двумя точками (концами) и . Но это отличие принципиальное, существенное, как увидим в дальнейшем, например, при изучении свойств функций.

Опуская слова «множество всех чисел (точек) x таких, что» и т. п., отметим далее:

и
, обозначается
и
полуоткрытые, или полузамкнутые, интервалы (иногда: полуинтервалы);

или
означает:
или
и обозначается
или
;

или
означает
или
и обозначается
или
;

, обозначается
множество всех действительных чисел. Значки
символы «бесконечности»; их называют несобственными или идеальными числами.

§1.3. Абсолютная величина (или модуль) действительного числа
Определение. Абсолютной величиной (или модулем) числа называется само это число, если
или
если
. Обозначается абсолютная величина символом . Итак,

Например,
,
,
.

Геометрически означает расстояние точки a до начала координат. Если имеем две точки и , то расстояние между ними можно представить как
(или
). Например,
то расстояние
.

Свойства абсолютных величин.

1. Из определения следует, что

,
, то есть
.

2. Абсолютная величина суммы и разности не превосходит суммы абсолютных величин:
.

1) Если
, то
. 2) Если
, то . ▲

3.
.

, тогда по свойству 2:
, т.е.
. Аналогично, если представить
,то придём к неравенству

4.
– следует из определения: рассмотреть случаи
и
.

5.
, при условии, что
Так же следует из определения.

6. Неравенство
,
, означает
. Этому неравенству удовлетворяют точки, которые лежат между
и
.

7. Неравенство
равносильно неравенству
, т.е. . Это есть интервал с центром в точке длины
. Он называется
окрестностью точки (числа) . Если
, то окрестность называется проколотой: это или
. (Рис.1.4).

8.
откуда следует, что неравенство
(
) равносильно неравенству
или
; а неравенство
определяет множество точек, для которых
, т.е. это точки, лежащие вне отрезка
, именно:
и
.

§1.4. Некоторые понятия, обозначения
Приведём некоторые широко применяемые понятия, обозначения из теории множеств, математической логики и других разделов современной математики.

1 . Понятие множества является одним из основных в математике, исходным, всеобщим – а потому не поддаётся определению. Его можно лишь описать (заменить синонимами): это есть собрание, совокупность каких-то объектов, вещей, объединённых какими-либо признаками. Объекты эти называются элементами множества. Примеры: множество песчинок на берегу, звёзд во Вселенной, студентов в аудитории, корней уравнения, точек отрезка. Множества, элементы которых суть числа, называются числовыми множествами . Для некоторых стандартных множеств вводятся специальные обозначения, например, N , Z , R - см. § 1.1.

Пусть A – множество и x является его элементом, тогда пишут:
; читается «x принадлежит A » (
знак включения для элементов). Если же объект x не входит в A , то пишут
; читается: «x не принадлежит A ». Например,
N ; 8,51N ; но 8,51R .

Если x является общим обозначением элементов множества A , то пишут
. Если возможно выписать обозначение всех элементов, то пишут
,
и т. п. Множество, не содержащее ни одного элемента, называется пустым множеством и обозначается символом ; например, множество корней (действительных) уравнения
есть пустое.

Множество называется конечным , если оно состоит из конечного числа элементов. Если же какое бы натуральное число N ни взяли, во множестве A найдётся элементов больше, чем N, то A называется бесконечным множеством: в нём элементов бесконечно много.

Если всякий элемент множества ^ A принадлежит и множеству B , то называется частью или подмножеством множества B и пишут
; читается «A содержится в B » (
есть знак включения для множеств). Например, N Z R. Если и
, то говорят, что множества A и B равны и пишут
. В противном случае пишут
. Например, если
, а
множество корней уравнения
, то .

Совокупность элементов обоих множеств A и B называется объединением множеств и обозначается
(иногда
). Совокупность элементов, принадлежащих и A и B , называется пересечением множеств и обозначается
. Совокупность всех элементов множества ^ A , которые не содержатся в B , называется разностью множеств и обозначается
. Схематично эти операции можно изобразить так:

Если между элементами множеств можно установить взаимно-однозначное соответствие, то говорят, что эти множества эквивалентны и пишут
. Всякое множество A , эквивалентное множеству натуральных чисел N = называется счётным или исчислимым. Иначе говоря, множество называется счётным, если его элементы можно пронумеровать, расположить в бесконечную последовательность
, все члены которой различны:
при
, и его можно записать в виде . Прочие бесконечные множества называются несчётными . Счётными, кроме самого множества N, будут, например, множества
, Z. Оказывается, что множества всех рациональных и алгебраических чисел – счётные, а эквивалентные между собой множества всех иррациональных, трансцендентных, действительных чисел и точек любого интервала – несчётные. Говорят, что последние имеют мощность континуума (мощность – обобщение понятия количества (числа) элементов для бесконечного множества).

2 . Пусть есть два утверждения, два факта: и
. Символ
означает: «если верно , то верно и » или «из следует », « имплицирует есть корень уравнения обладает свойством от английского Exist – существовать.

Запись:

, или
, означает: существует (по крайней мере один) предмет , обладающий свойством . А запись
, или
, означает: все обладают свойством . В частности, можем записать:
и .

Существуют следующие формы комплексных чисел: алгебраическая (x+iy), тригонометрическая (r(cos+isin)), показательная (re i).

Всякое комплексное число z=x+iy можно изобразить на плоскости ХОУ в виде точки А(х,у).

Плоскость, на которой изображаются комплексные числа, называется плоскостью комплексного переменного z (на плоскости ставим символ z).

Ось ОХ – действительная ось, т.е. на ней лежат действительные числа. ОУ – мнимая ось с мнимыми числами.

x+iy - алгебраическая форма записи комплексного числа.

Выведем тригонометрическую форму записи комплексного числа.

Подставляем полученные значения в начальную форму: , т.е.

r(cos +isin ) - тригонометрическая форма записи комплексного числа.

Показательная форма записи комплексного числа следует из формулы Эйлера:
,тогда

z=re i - показательная форма записи комплексного числа.

Действия над комплексными числами.

1. сложение. z 1 +z 2 =(x1+iy1)+ (x2+iy2)=(x1+x2)+i(y1+y2);

2 . вычитание. z 1 -z 2 =(x1+iy1)- (x2+iy2)=(x1-x2)+i(y1-y2);

3. умножение. z 1 z 2 =(x1+iy1)*(x2+iy2)=x1x2+i(x1y2+x2y1+iy1y2)=(x1x2-y1y2)+i(x1y2+x2y1);

4 . деление. z 1 /z 2 =(x1+iy1)/(x2+iy2)=[(x1+iy1)*(x2-iy2)]/[ (x2+iy2)*(x2-iy2)]=

Два комплексных числа, которые отличаются только знаком мнимой единицы, т.е. z=x+iy (z=x-iy), называются сопряженными.

Произведение.

z1=r(cos+isin); z2=r(cos+isin).

То произведение z1*z2 комплексных чисел находится: , т.е. модуль произведения равен произведению модулей, а аргумент произведения равен сумме аргументов сомножителей.

;
;

Частное.

Если комплексные числа заданы в тригонометрической форме.

Если комплексные числа заданы в показательной форме.

Возведение в степень.

1. Комплексное число задано в алгебраической форме.

z=x+iy, то z n находим по формуле бинома Ньютона :

- число сочетаний из n элементов по m (число способов, сколькими можно взять n элементов из m).

; n!=1*2*…*n; 0!=1;
.

Применяем для комплексного числа.

В полученном выражении нужно заменить степени i их значениями:

i 0 =1 Отсюда, в общем случае получаем: i 4k =1

i 1 =i i 4k+1 =i

i 2 =-1 i 4k+2 =-1

i 3 =-i i 4k+3 =-i

Пример .

i 31 = i 28 i 3 =-i

i 1063 = i 1062 i=i

2. тригонометрической форме.

z=r(cos+isin), то

- формула Муавра .

Здесь n может быть как “+” так и “-” (целым).

3. Если комплексное число задано в показательной форме:

Извлечение корня.

Рассмотрим уравнение:
.

Его решением будет корень n–ой степени из комплексного числа z:
.

Корень n–ой степени из комплексного числа z имеет ровно n решений (значений). Корень из действующего числа n-ой степени имеет только одно решение. В комплексных – n решений.

Если комплексное число задано в тригонометрической форме:

z=r(cos+isin), то корень n-ой степени от z находится по формуле:

, где к=0,1…n-1.

Ряды. Числовые ряды.

Пусть переменная а принимает последовательно значения а 1 ,а 2 ,а 3 ,…,а n . Такое перенумерованное множество чисел называется последовательностью. Она бесконечна.

Числовым рядом называется выражение а 1 +а 2 +а 3 +…+а n +…=. Числа а 1 ,а 2 ,а 3 ,…,а n – члены ряда.

Например.

а 1 – первый член ряда.

а n – n-ый или общий член ряда.

Ряд считается заданным, если известен n-ый (общий член ряда).

Числовой ряд имеет бесконечное число членов.

Числители – арифметическая прогрессия (1,3,5,7…).

n-ый член находится по формуле а n =а 1 +d(n-1); d=а n -а n-1 .

Знаменатель – геометрическая прогрессия . b n =b 1 q n-1 ;
.

Рассмотрим сумму первых n членов ряда и обозначим ее Sn.

Sn=а1+а2+…+а n .

Sn – n-ая частичная сумма ряда.

Рассмотрим предел:

S - сумма ряда.

Ряда сходящийся , если этот предел конечен (конечный предел S существует).

Ряд расходящийся , если этот предел бесконечен.

В дальнейшем наша задача заключается в следующем: установить какой ряд.

Одним из простейших, но часто встречающихся рядов является геометрическая прогрессия.

, C=const.

Геометрическая прогрессия является сходящимся рядом , если
, и расходящимся, если
.

Также встречается гармонический ряд (ряд
). Этот рядрасходящийся .

БИЛЕТ 1

Рациональные числа – числа, записываемые в виде p/q, где q – натурал. число, а p- целое.

Два числа a=p1/q1 и b=p2/q2 назыв равными если p1q2=p2q1, аp2q1 и а>b если p1q2Опр - два действ положит числа α=а0, а1, а2…, β=b0,b1,b2… говорят что число α<β если a0β. Модулем числа α назыв |α|=|+-а0, а1, а2…an|= а0, а1, а2…an. Говорят что отриц число α=-а0, а1, а2 < отриц числа β=-b0,b1,b2 если |α|>|β|. Если β и α действ числа причём α<β то сущ-ет рац число R такое что αГеметр интерпритация действ чисел. Действ ось – числова ось. Начало корд- 0. Вся ось (-∞;+∞), интервал – xЄR. Отрезок __,M1__,0__,__,M2__,__; M1<0 x=a0,a1, M2>0 x=-a0,a1.

БИЛЕТ 2

Комплексные числа. Комплексные числа

Алгебраическим уравнением называется уравнение вида: P n (x ) = 0, где P n (x ) - многочлен n - ой степени. Пару вещественных чисел x и у назовём упорядоченной, если указано, какое из них считается первым, а какое - вторым. Обозначение упорядоченной пары: (x , y ). Комплексным числом назовём произвольную упорядоченную пару вещественных чисел. z = (x , y )-комплексное число.

x -вещественная часть z , y -мнимая часть z . Если x = 0 и y = 0, то z = 0. Рассмотрим z 1 = (x 1 , y 1) и z 2 = (x 2 , y 2).

Определение 1. z 1 = z 2 , если x 1 =x 2 и y 1 = y 2 .

Понятия > и < для комплексных чисел не вводятся.

Геометрическое изображение и тригонометрическая форма комплексных чисел.

M(x , y ) « z = x + iy .

½ OM½ = r =½ z ½ = .(рисунок)

r называется модулем комплексного числа z .

j называется аргументом комплексного числа z . Он определён с точностью до ± 2pn .

х = rcosj , y = rsinj.

z = x + iy = r(cosj + i sinj) - тригонометрическая форма комплексных чисел.

Утверждение 3.

= (cos + i sin ),

= (cos + i sin ), то

= (cos( + ) + i sin( + )),

= (cos( - )+ i sin( - )) при ¹0.

Утверждение 4.

Если z =r (cosj + i sinj), то " натурального n :

= (cos nj + i sin nj ),

БИЛЕТ 3

Пусть X -числовое множество, содержащее хотя бы одно число (непустое множество).

x Î X - x содержится в Х . ; x Ï X - x не принадлежит Х .

Определение : Множество Х называется ограниченным сверху (снизу), если существует число М (m ) такое, что для любого x Î X выполняется неравенство x £ M (x ³ m ), при этом число М называется верхней(нижней) гранью множества Х . Множество Х называется ограниченным сверху, если $ M , " x Î Х : x £ M . Определение неограниченного сверху множества. Множество X называется неограниченным сверху, если " M $ x Î Х : x > M. Определение множество X называется огранич., если оно ограничено сверху и снизу, то есть $ М , m такие, что " x Î Х : m £ x £ M. Эквивалентное определение огр мн-ва: Множество X называется ограниченным, если $ A > 0, " x Î X : ½x ½£ A . Определение: Наименьшая из верхних граней ограниченного сверху множества Х называется его точной верхней гранью, и обозначается SupХ

(супремум). =SupХ . Аналогично можно определить точную

нижнюю грань. Эквивалентное определение точной верхней грани:

Число называется точной верхней гранью множества Х , если: 1) " x Î X : х £ (это условие показывает, что - одна из верхних граней). 2) " < $ x Î X : х > (это условие показывает, что -

наименьшая из верхних граней).

Sup X = :

1. " x Î X : x £ .

2. " < $ x ÎX : x > .

inf X (инфимум)-это точная нижняя грань. Поставим вопрос: всякое ли ограниченное множество имеет точные грани?

Пример: Х = {x : x >0} не имеет наименьшего числа.

Теорема о сущ-нии точной верх (ниж) грани . Всякое непустое огранич сверху (снизу) мн-во xÎR имеет точ верх(ниж) грань.

Теорема об отделимости числовых мн-в: ▀▀▄

БИЛЕТ 4

Если каждому натуре числу n (n=1,2,3..) поставлено в соотв-е нек число Xn, то говорят что опред-на и задана последовательность x1, x2 …, пишут {Xn}, (Xn).Пример: Xn=(-1)^n: -1,1,-1,1,…После-ть назыв огранич. сверху (снизу) если мн-во точек x=x1,x2,…xn лежащ на числовой оси огранич сверху (снизу), т.е. $С:Xn£C" Предел посл-ти: число а назыв пределом посл-ти, если для люб-го ε>0 $ : N (N=N/(ε)). "n>N выполн-ся неравенство |Xn-a|<ε. Т.е. – ε а–εА называется пределом числовой последовательности {a n }, если

при n > N .

Единственность предела ограниченной и сходящейся последовательности

Свойство1: Сходящаяся последовательность имеет только один предел.

Доказательство: от противного пусть а и b пределы сходящейся последовательности {x n }, причем a не равно b. рассмотрим бесконечно малые последовательности {α n }={x n -a}и {β n }={x n -b}. Т.к. все элементы б.м. последовательности {α n -β n } имеют одно и тоже значение b-a, то по свойству б.м. последовательности b-a=0 т.е. b=a и мы пришли к противоречию.

Свойство2: Сходящаяся последовательность ограничена.

Доказательство: Пусть а – предел сходящейся последовательности {x n }, тогда α n =x n -a есть элемент б.м. последовательности. Возьмем какое-либо ε>0 и по нему найдем N ε: / x n -a/< ε при n> N ε . Обозначим через b наибольшее из чисел ε+/а/, /х1/, /х2/,…,/х N ε-1 /,х N ε . Очевидно, что / х n /

Замечание: ограниченная последовательность может и не быть сходящаяся.

БИЛЕТ 6

Последовательность а n называется бесконечно малой, это означает, что предел этой последовательности после равен 0.

a n – бесконечно малая Û lim(n ® + ¥)a n =0 то есть для любого ε>0 существует N, такое что для любого n>N выполняется |a n |<ε

Теорема. Сумма бесконечно малой есть бесконечно малое.

a n b n ®бесконечно малое Þ a n +b n – бесконечно малое.

Доказательство.

a n - бесконечно малое Û "ε>0 $ N 1:" n >N 1 Þ |a n |<ε

b n - бесконечно малое Û "ε>0 $ N 2:" n >N 2 Þ |b n |<ε

Положим N=max{N 1 ,N 2 }, тогда для любого n>N Þ одновременно выполняется оба неравенства:


|a n |<ε |a n +b n |£|a n |+|b n |<ε+ε=2ε=ε 1 "n>N

Зададим "ε 1 >0, положим ε=ε 1 /2. Тогда для любого ε 1 >0 $N=maxN 1 N 2: " n>N Þ |a n +b n |<ε 1 Û lim(n ® ¥)(a n +b n)=0, то

есть a n +b n – бесконечно малое.

Теорема Произведение бесконечно малого есть бесконечно малое.

a n ,b n – бесконечно малое Þ a n b n – бесконечно малое.

Докозательство:

Зададим "ε 1 >0, положим ε=Öε 1 , так как a n и b n – бесконечно малое для этого ε>0, то найдётся N 1: " n>N Þ |a n |<ε

$N 2: " n>N 2 Þ |b n |<ε

Возьмем N=max {N 1 ;N 2 }, тогда "n>N = |a n |<ε

|a n b n |=|a n ||b n |<ε 2 =ε 1

" ε 1 >0 $N:"n>N |a n b n |<ε 2 =ε 1

lim a n b n =0 Û a n b n – бесконечно малое, что и требовалось доказать.

Теорема Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность

а n – ограниченная последовательность

a n –бесконечно малая последовательность Þ a n a n – бесконечно малая последовательность.

Доказательство: Так как а n – ограниченная Û $С>0: "nÎN Þ |a n |£C

Зададим "ε 1 >0; положим ε=ε 1 /C; так как a n – бесконечно малая, то ε>0 $N:"n>NÞ |a n |<εÞ |a n a n |=|a n ||a n |

"ε 1 >0 $N: "n>N Þ |a n a n |=Cε=ε 1 Þ lim(n ® ¥) a n a n =0Û a n a n – бесконечно малое

Последовательность называется ББП (последовательностью) если Пишут . Очевидно, ББП не ограничена. Обратное же утверждение вообще говоря неверно (пример ). Если для больших n члены , то пишут это значит, что как только .

Аналогично определяется смысл записи

Бесконечно большие последовательност a n =2 n ; b n =(-1) n 2 n ;c n =-2 n

Определение (бесконечно большие последовательности)

1) lim(n ® ¥)a n =+¥, если "ε>0$N:"n>N Þ a n >ε где ε- сколь угодно малое.

2) lim(n ® ¥)a n =-¥, если "ε>0 $N:"n>N Þ a n <-ε

3) lim(n ® ¥)a n =¥ Û "ε>0 $N:"n>N Þ |a n |>ε

БИЛЕТ 7

Теорема “О сходимости монотон. посл-ти”

Всякая монотонная посл-ть явл-ся сходящейся, т.е. имеет пределы.Док-во Пусть посл-ть {xn} монотонно возр. и ограничена сверху. X – все мн-во чисел которое принимает эл-т этой посл-ти согласно усл. Теоремы это мн-во огранич., поэтому по соотв. Теореме оно имеет конечную точную верх. грань supX xn®supX (обозначим supX через х*). Т.к. х* точная верх. грань, то xn£x* " n. " e >0 вып-ся нер-во $ xm(пусть m- это n с крышкой):xm>x*-e при " n>m => из указанных 2-х неравенств получаем второе неравенство x*-e£xn£x*+e при n>m эквивалентно ½xn-x*½m. Это означает, что x* явл. пределом посл-ти.

БИЛЕТ 8

Экспонента или число е

Р-рим числ. посл-ть с общим членом xn=(1+1/n)^n (в степени n)(1) . Оказывается, что посл-ть (1) монотонно возр-ет, ограничена сверху и сл-но явл-ся сходящейся, предел этой пос-ти наз-ся экспонентой и обозначается символом е»2,7128… Число е

БИЛЕТ 9

Принцип вложенных отрезков

Пусть на числовой прямой задана посл-ть отрезков ,,…,,…

Причем эти отрезки удовл-ют сл. усл.:

1) каждый посл-щий вложен в предыдущий, т.е. Ì, "n=1,2,…;

2) Длины отрезков ®0 с ростом n, т.е. lim(n®¥)(bn-an)=0. Посл-ть с указанными св-вами наз-ют вложенными.

Теорема Любая посл-ть вложенных отрезков содержит единную т-ку с принадлежащую всем отрезкам посл-ти одновременно, с общая точка всех отрезков к которой они стягиваются.

Док-во {an}-посл-ть левых концов отрезков явл. монотонно не убывающей и ограниченной сверху числом b1.

{bn}-посл-ть правых концов монотонно не возрастающей, поэтому эти посл-ти явл. сходящимися, т.е. сущ-ют числа с1=lim(n®¥)an и с2=lim(n®¥)bn => c1=c2 => c - их общее значение. Действительно имеет предел lim(n®¥)(bn-an)= lim(n®¥)(bn)- lim(n®¥)(an) в силу условия 2) o= lim(n®¥)(bn-an)=с2-с1=> с1=с2=с

Ясно что т. с общая для всех отрезков, поскольку "n an£c£bn. Теперь докажем что она одна.

Допустим что $ другая с‘ к которой стягиваются все отрезки. Если взять любые не пересекающиеся отрезки с и с‘, то с одной стороны весь “хвост” посл-тей {an},{bn} должен нах-ся в окрестностях т-ки с‘‘(т.к. an и bn сходятся к с и с‘ одновременно). Противоречие док-ет т-му.

БИЛЕТ 10

Теорема Больцано-Вейерштрасса Из любой огран. посл-ти можно выбрать сход. подпосл-ть.

1. Поскольку посл-ть ограничена, то $ m и M, такое что " m£xn£M, " n.

D1= – отрезок, в котором лежат все т-ки посл-ти. Разделим его пополам. По крайней мере в одной из половинок будет нах-ся бесконечное число т-к посл-ти.

D2 – та половина, где лежит бесконечное число т-к посл-ти. Делим его пополам. По краней мере в одной из половинок отр. D2 нах-ся бесконечное число т-к посл-ти. Эта половина - D3. Делим отрезок D3 … и т.д. получаем посл-ть вложенных отрезков, длинны которых стремятся к 0. Согластно о т-ме о вложенных отрезках, $ единств. т-ка С, кот. принадл. всем отрезкам D1, какую-либо т-ку Dn1. В отрезке D2 выбираю т-ку xn2, так чтобы n2>n1. В отрезке D3 … и т.д. В итоге пол-ем посл-ть xnkÎDk.

БИЛЕТ 11

БИЛЕТ 12

фундаментальной

В заключении рассмотрим вопрос критерия сходимости числовой последовательности.

Пусть т.е.: на ряду с натуральным числом можно подставить в последнее неравенство другое натуральное число ,тогда

Мы получили следующее утверждение:

Если последовательность сходится, выполняется условие Коши :

Числовая последовательность удовлетворяет условию Коши называется фундаментальной . Можно доказать, что и справедлива и обратное утверждение. Таким образом мы имеем критерий (необходимое и достаточное условие) сходимости последовательности.

Критерий Коши.

Для того, чтобы последовательность имела предел необходимо и достаточно, что бы она была фундаментальной.

Второй смысл критерия Коши. Члены последовательности и где n и m – любые неограниченно сближающиеся при .

БИЛЕТ 13

Односторонние пределы.

Определение 13.11. Число А называется пределом функции у = f(x ) при х , стремящемся к х 0 слева (справа), если такое, что |f(x)-A |<ε при x 0 – х < δ (х - х 0 < δ ).

Обозначения:

Теорема 13.1(второе определение предела). Функция y=f(x) имеет при х, стремящемся к х 0 , предел, равный А , в том и только в том случае, если оба ее односторонних предела в этой точке существуют и равны А .

Доказательство.

1) Если , то и для x 0 – х < δ, и для х - х 0 < δ |f(x) - A |<ε, то есть

1) Если , то существует δ 1: |f(x) - A | < ε при x 0 – x < δ 1 и δ 2: |f(x) - A | < ε при х - х 0 < δ 2 . Выбрав из чисел δ 1 и δ 2 меньшее и приняв его за δ, получим, что при |x - x 0 | < δ |f(x) - A | < ε, то есть . Теорема доказана.

Замечание. Поскольку доказана эквивалентность требований, содержащихся в определении предела 13.7 и условия существования и равенства односторонних пределов, это условие можно считать вторым определением предела.

Определение 4 (по Гейне)

Число А называется пределом функции при если любой ББП значений аргумента последовательность соответствующих значений функции сходится к А.

Определение 4 (по Коши).

Число А называется если . Доказывается, что эти определения равносильны.

БИЛЕТ 14 и 15

Свойства предела ф-ции в точке

1) Если предел в т-ке сущ-ет, то он единственный

2) Если в тке х0 предел ф-ции f(x) lim(x®x0)f(x)=A

lim(x®x0)g(x)£B=> то тогда в этой т-ке $ предел суммы, разности, произведения и частного. Отделение этих 2-х ф-ций.

а) lim(x®x0)(f(x)±g(x))=A±B

б) lim(x®x0)(f(x)*g(x))=A*B

в) lim(x®x0)(f(x):g(x))=A/B

г) lim(x®x0)C=C

д) lim(x®x0)C*f(x)=C*A

Теорема 3.

Если (resp A) то $ окрестность в которой выполняется неравенство >B (resp Пусть A>B положим тогда При выбранном левая из этих неравенств имеет вид >B resp доказывается 2 часть теоремы только в этом случае берем Следствие (сохранение функции знаки своего предела).

Полагая в теореме 3 B=0 , получаем: если (resp ), то $ , во всех точках, которой будет >0 (resp <0), т.е. функция сохраняет знак своего предела.

Теорема 4 (о предельном переходе в неравенстве).

Если в некоторой окрестности точки (кроме быть может самой этой точки) выполняется условие и данные функции имеют в точке пределы, то . На языке и . Введем функцию . Ясно, что в окрестности т. . Тогда по теореме о сохранении функции значении своего предела имеем , но

Теорема 5. (о пределе промежуточной функции).

(1) Если и в некоторой окрестности т. (кроме быть может самой т. ) выполняется условие (2) , то функция имеет в т. предел и этот предел равен А. по условию (1) $ для (здесь - наименьшая окрестность точки ). Но тогда в силу условия (2) для значения так же будет находится в - окрестности точки А, т.е. .

БИЛЕТ 16

Определение 14.1. Функция у=α(х ) называется бесконечно малой при х→х 0 , если

Свойства бесконечно малых.

1. Сумма двух бесконечно малых есть бесконечно малая.

Доказательство. Если α(х ) и β(х ) – бесконечно малые при х→х 0 , то существуют δ 1 и δ 2 такие, что |α(x )|<ε/2 и |β(x )|<ε/2 для выбранного значения ε. Тогда |α(x)+β(x)|≤|α(x)|+|β(x )|<ε, то есть |(α(x)+β(x ))-0|<ε. Следовательно, , то есть α(х)+β(х ) – бесконечно малая.

Замечание. Отсюда следует, что сумма любого конечного числа бесконечно малых есть бесконечно малая.

2. Если α(х ) – бесконечно малая при х→х 0 , а f(x ) – функция, ограниченная в некоторой окрестности х 0 , то α(х)f(x ) – бесконечно малая при х→х 0 .

Доказательство. Выберем число М такое, что |f(x)| при |x-x 0 |< δ 1 , и найдем такое δ 2 , что |α(x)|<ε/M при |x-x 0 |<δ 2 . Тогда, если выбрать в качестве δ меньшее из чисел δ 1 и δ 2 , |α(x)·f(x)|, то есть α(х)·f(x) – бесконечно малая.

Следствие 1. Произведение бесконечно малой на конечное число есть бесконечно малая.

Следствие 2. Произведение двух или нескольких бесконечно малых есть бесконечно малая.

Следствие 3. Линейная комбинация бесконечно малых есть бесконечно малая.

3. (Третье определение предела ). Если , то необходимым и достаточным условием этого является то, что функцию f(x ) можно представить в виде f(x)=A+α(x ), где α(х ) – бесконечно малая при х→х 0 .

Доказательство.

1) Пусть Тогда |f(x)-A |<ε при х→х 0 , то есть α(х)=f(x)-A – бесконечно малая при х→х 0 . Следовательно, f(x)=A+α(x).

2) Пусть f(x)=A+α(x ). Тогда значит, |f(x)-A |<ε при |x - x 0 | < δ(ε). Cледовательно, .

Замечание. Тем самым получено еще одно определение предела, эквивалентное двум предыдущим.

Бесконечно большие функции.

Определение 15.1. Функция f(x) называется бесконечно большой при х х 0 , если

Для бесконечно больших можно ввести такую же систему классификации, как и для бесконечно малых, а именно:

1. Бесконечно большие f(x) и g(x) считаются величинами одного порядка, если

2. Если , то f(x) считается бесконечно большой более высокого порядка, чем g(x).

3. Бесконечно большая f(x) называется величиной k-го порядка относительно бесконечно большой g(x), если .

Замечание. Отметим, что а х – бесконечно большая (при а>1 и х ) более высокого порядка, чем x k для любого k, а log a x – бесконечно большая низшего порядка, чем любая степень х k .

Теорема 15.1. Если α(х) – бесконечно малая при х→х 0 , то 1/α(х) – бесконечно большая при х→х 0 .

Доказательство. Докажем, что при |x - x 0 | < δ. Для этого достаточно выбрать в качестве ε 1/M. Тогда при |x - x 0 | < δ |α(x)|<1/M, следовательно,

|1/α(x)|>M. Значит, , то есть 1/α(х) – бесконечно большая при х→х 0 .

БИЛЕТ 17

Теорема 14.7 (первый замечательный предел). .

Доказательство. Рассмотрим окружность единичного радиуса с центром в начале координат и будем считать, что угол АОВ равен х (радиан). Сравним площади треугольника АОВ, сектора АОВ и треугольника АОС, где прямая ОС – касательная к окружности, проходящая через точку (1;0). Очевидно, что .

Используя соответствующие геометрические формулы для площадей фигур, получим отсюдa, что , или sinx0), запишем неравенство в виде: . Тогда , и по теореме 14.4 .

Похожие статьи

© 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.