Горение воды. Печь с высоким КПД своими руками: харьковский рационализатор предложил использовать водяной пар (видео) Инфракрасное излучение быстрей и полней прогревает печь, нагреваются даже те кирпичи, которые раньше были холодные

Подробности Опубликовано: 04.11.2015 07:48

Печное отопление в Украине, что называется, переживает второе рождение. Причины такого явления понятны без всяких объяснений. Именно поэтому харьковский рационализатор Олег Петрик предложил использовать технологии пылеугольных ТЭС для повышения эффективности домашних печей, причем для этого совсем не обязательно обладать навыками опытного слесаря.

Как можно поднять КПД угольной (дровяной) печи или твердотопливного котла без применения дополнительных энергоресурсов.

Принцип работы технологии достаточно прост: вода из резервуара (парогенератора) превращается в пар с высокой температурой (400 – 500 С) и подается непосредственно в пламя, выступая своеобразным катализатором горения, увеличивающим производительность отопительной установки.

Для создания рационализаторской системы, понадобится: парогенератор, который изготавливается из подручных средств (подойдет канистра или кастрюля, желательно из нержавеющей стали, может использоваться даже старый самогонный аппарат). В емкость врезается ниппель из автомобильной покрышки. Также понадобится около полуметра кислородного шланга и примерно полтора метра трубки, желательно из тонкостенной нержавейки с внутренним диаметром 8 мм, из которой изготавливается пароперегреватель .

По пароперегревателю, пар в разогретом состоянии попадает через отверстие в плите на колосниковую решетку. На конце трубки монтируется рассекатель пара для нейтрализации шума: трубка болгаркой разрезается немного меньше, чем на половину, с шагом, примерно, 10 мм, делается 7 - 10 пропилов, далее отверстия обматываются сеткой с окном 20-30 микрон из нержавеющей стали в ​​два-три слоя, а прикрепляется она к трубке проволокой диаметром 1-1,5 мм.

Резиновую трубку над плитой необходимо поднять на 20-30 сантиметров (на представленном фото она не поднята). Хотя некоторое охлаждение кислородного шланга происходит за счет водяного пара, это нужно сделать из соображений пожарной безопасности.

Для того, чтобы, в свою очередь, ускорить выработку пара парогенератором, необходимо при разжигании дров, залить в емкость не более 200 мл воды, она закипит за 5-8 мин и устройство начнет работать на полную мощность. После этого в парогенератор можно полностью наполнить водой для длительной работы печи.

Увеличение производительности составляет, приблизительно, 50%, в сравнении с обычными устройствами. Испытания устройства показали, что выход печи на рабочий режим сократился в двое, то есть с 2 до 4 часов. Это значит, что дров для протопки печи понадобится в два раза меньше. Улучшилась полнота сгорания топлива, выходящий из трубы дым практически не виден, а количество золы значительно уменьшилось. В связи подорожанием энергоносителей, в частности природного газа, такая модернизация станет актуальной для многих домовладельцев.

Разумеется, что предложенное решение требует существенных доработок: необходимо автоматизировать процесс подачи воды, оптимизировать саму конструкцию и прочее. Однако, вариант недорогой и быстрой «прокачки» печи элементарными средствами, которые найдутся в каждом доме, поможет многим людям значительно сэкономить, а также, возможно станет толчком к разработке новых технологий и рождению новых идей.

В арсенале умельца из Харькова также имеется с окном экспериментальная установка по сжиганию угля или дров в паровой атмосфере или, как он ее называет, «водородная буржуйка»

Справка. Перегретый пар широко применяется для улучшения эффективности турбин на теплоэлектростанциях, с начала прошлого века использовался на паровозах всех типов. Более того, были разработаны проекты ядерных реакторов, где часть технологических каналов должны использоваться для перегрева пара перед подачей в турбины. Известно, что применение пароперегревателя позволяет существенно поднять КПД паровой установки и снизить износ ее узлов.

Введение

О воде уже достаточно много написано в предшествующем материале /1, 2, 3/. Но с течением времени пришло новое понимание и новые факты, знание которых необходимо для лучшей и более правильной организации процессов получения энергии из воды.

Вода в жидком состоянии образует цепочку своих молекул Н2О, соединенных между собой электронами связи. Максимальное количество молекул в цепочке, по условиям прочности жидкого монокристалла воды, составляет 3761 штук. Столько же электронов. При разрушении цепочки освободившиеся электроны связи в определенных условиях могут стать генераторами энергии аналогично электронам топливных углеводородных цепочек. В состоянии насыщенного пара молекула водяного пара состоит из трех молекул воды (триада). При критических параметрах вода представляет собой дитриаду. Водяной газ состоит из отдельных молекул воды, при этом, как правило, к молекуле водяного газа присоединен один электрон связи. Такой агрегат или ион воды почти нейтрален. Никаких процессов самопроизвольного энерговыделения в водяном газе нет, что косвенно подтверждает отсутствие в нем свободных электронов. Все остальные промежуточные состояния воды могут характеризоваться соответствующим промежуточным количеством молекул воды в агрегатах молекул жидкости, пара и газа воды в зависимости от давления и температуры.

Молекула воды очень прочная, так как даже при закритических параметрах не разрушается на атомы. Однако, при других внешних воздействиях, например, электролизе воды, как известно, разлагается на водород и кислород. Они могут участвовать в обычном традиционном горении. Специфическим для воды, как и любой жидкости, является кавитация – нарушение сплошности с образованием и схлопыванием пузырьков. При этом достигаются высокие параметры – давление и температура, активизируются молекулы, часть их разрушается, а часть оставшихся разрушается ударными волнами. Свободные электроны – генераторы производят энергию, взаимодействуя с положительными ионами, в первую очередь, кислорода, а также водорода и других фрагментов, полученных в результате разрушения. Идет атомная реакция, в том числе, с образованием новых химических элементов, например, гелия как наиболее заметного из них. Именно по этой причине некоторые из таких процессов получили название «холодный синтез». Однако, энергия все же, как видно, получается за счет разрушения, распада, расщепления атомов и фрагментов воды при кавитации в процессе ФПВР.

Молекула воды полярна и также может взаимодействовать электродинамически с электроном – генератором энергии целиком – с положительного конца. Видимо, этим можно объяснить в некоторых случаях легкость получения энергии из воды, например, в кавитационных теплогенераторах. По этой же причине при смешивании с углеводородным топливом примерно пополам образуется новое топливо, не расслаивающаяся как эмульсия, с теплотворной способностью такой же, как у углеводородного топлива.

Из воды энергию также можно получить чисто гидравлически (гидравлический удар, таран) путем усиления первичного напора и последующим срабатыванием разности напоров для получения полезной работы. Традиционное невнятное объяснение этого явления теперь можно заменить на отчетливое, заключающееся в явлении разгона звуковой волны с помощью энергии колеблющихся и взаимодействующих между собой и с окружающей средой молекул воды электродинамически с участием перетока электринного газа. Избыточную энергию можно получить еще одним гидравлическим способом – самовращением воды под действием кориолисовых сил.

Из этого краткого описания следуют пять основных процессов как источников получения энергии непосредственно из воды:

Катализ (разрушение) и сжигание, горение, как и любого вещества (ФПВР),

Кавитация с последующим ФПВР,

Электролиз с последующим, обычным, сжиганием выделившихся газов, в том числе, в электро-химическом генераторе (ЭХГ, топливный элемент),

Разгон звуковой волны с повышением первичного напора,

Самовращение под действием кориолисовых сил.

Указанные способы, я думаю, не исчерпывают всех возможных и могут быть применены как в отдельности друг от друга, так в совокупности, комбинации, друг с другом для усиления эффекта и облегчения получения избыточной энергии непосредственно из воды.

Еще совсем недавно ученые во многих странах мира рассматривали воду в качестве источника топлива будущего. Речь, естественно, шла о водороде, который пытались получать из воды разными способами. Были даже созданы экспериментальные автомобили, но до массового применения дело пока не дошло. Перспектива перехода на водородное топливо, конечно, весьма заманчива. Просто мечта! Но в ближайшее время сбыться ей, похоже, не суждено.

Зато вода обнаружила себя с другой, очень положительной стороны. Она буквально «чистит» пламя горелки! Точнее, не сама вода, а водяной пар, образующийся при ее испарении при высоких температурах. С простой обывательской точки зрения это кажется невероятным.

В нашем сознании вода и огонь – это непримиримые антагонисты. И представить, что вода может поддерживать горение, способствовать чистоте пламени и, вдобавок ко всему, повышать температуру сгорания топлива, для многих очень сложно. Однако ничего фантастического здесь нет. Всё элементарно объясняется законами физики и химии.

Естественно, чтобы «заставить» воду войти, так сказать, в союз с огнем, ее нужно особым образом включить в процесс горения, с помощью специальных приспособлений. И тогда мы видим такую картину: тусклое, чадящее пламя вдруг преображается в яркий чистый факел. Копоть куда-то исчезает. Огонь действительно «преображается», становится каким-то шумно-бодрым, искристым, почти как фейерверк. Что за чудеса, в самом деле? Неужто на это и впрямь повлияла вода?

Кстати, в Интернете можно найти немало картинок и видео с демонстрацией таких чудес. Отношение многих из нас к подобным вещам довольно скептическое. «Ну вот, опять нас дурачат какие-то самодеятельные фокусники», – недоверчиво ворчит строгий зритель. Честно говоря, я и сам этому долго не верил. Обычно такое отношение к увиденному вызвано тем, что люди, демонстрирующие подобные «чудеса», не всегда дают внятные объяснения этим процессам. Поэтому неискушенный пользователь начинает подозревать их в шарлатанстве. Очень часто эти подозрения усиливаются именно из-за того, что обывателю сразу начинают, грубо говоря, «впаривать» какую-нибудь услугу, сопровождая ее фантастическими комментариями. Отсюда и появляется скепсис.

Однако не так давно подобный «фокус» мне продемонстрировали в лаборатории радиационного теплообмена Института теплофизики СО РАН. Как выяснилось, уже много лет в Институте проводят исследования в области горения жидких углеводородов. С помощью специальных горелочных устройств ученые исследуют способы так называемого бессажного сжигания углеводородного топлива. Что значит «бессажного», понятно – это когда топливо сгорает без копоти. То есть сгорает вот тем самым, упомянутым выше, искристым факелом. Этот факел мне как раз наглядно продемонстрировали на специальном испытательном стенде.

«Фокус» выглядит так. Представьте себе небольшую металлическую горелку цилиндрической формы, в которой поджигается дизельное топливо. Вы видите вначале обычное желтое пламя с копотью. Ничего примечательного – огонь как огонь. А дальше происходит «чудесное» превращение: в цилиндрический корпус, через который выходит пламя, вставляется еще один цилиндрический предмет из нержавеющей стали – парогенератор, заполненный водой и имеющий специальную форсунку для выхода перегретого пара. И как только факел начинает соприкасаться с этим паром, он мгновенно «преображается»: копоти как не бывало, пламя начинает искриться и шуметь. Вынимаем парогенератор – и опять обычный огонь с копотью. Вставляем парогенератор – копоть ушла, пламя зашумело и заискрилось. Так повторяют несколько раз.

В чем секрет такого «чудесного» превращения? На самом деле никакого чуда нет. Сплошные законы природы.

Суть заключается именно в том, что горение углеводородного топлива происходит здесь при высокой концентрации перегретого водяного пара. Когда пар, выходящий струей, соприкасается с пламенем, происходит так называемая реакция паровой газификации. На выходе факел уже практически не содержит никакой сажи.

Вдобавок ко всему, как уверяют ученые, повышается температура. Вода, содержащаяся в парогенераторе, нагревается от обычного пламени, а потом «истекает» через форсунку в виде перегретого пара с температурой на выходе в 400 градусов С. Измеренная температура «чистого» факела достигает здесь 1500 градусов! И это при том, что обычное дизельное топливо горит на воздухе с температурой в 1200 градусов С. Откуда берутся дополнительные «градусы», ученым еще предстоит выяснить. В Институте теплофизики пытаются найти объяснение такому эффекту.

Спрашивается, каким образом перегретый пар так благотворно влияет на процесс горения? Оказывается, это элементарно объясняется законами химии. Вы не задумывались, почему пожарная инструкция запрещает тушить горящие нефтепродукты водой? Дело в том, что вода, попадая в мощное пламя, испаряется, перегревается и в таком «разогретом» состоянии вступает в реакцию с углеродом. При таких высоких температурах связи в молекуле воды ослаблены, и углерод просто-напросто «отрывает» от нее элемент кислорода, вступая с ним в реакцию окисления. Окисляется как раз та самая сажа, которая при обычных условиях должна была осесть в виде копоти на стенках топочных камер и дымоходов. А горит уже синтез-газ. Вот и весь секрет.

В Институте теплофизики проводят сейчас опыты с разными конструкциями таких горелок бессажного сжигания. В одной водяного пара содержится 25%, в другой – 30 процентов.

Ведущий конструктор лаборатории радиационного теплообмена Михаил Вигриянов утверждает: «Мы абсолютно гарантируем, что добились полного, можно сказать, идеального сгорания топлива». Причем, сам этот способ сжигания уже запатентован.

Важно то, что при таком способе сжигания прекрасно горит любое углеводородное сырье. Даже некачественное. Например, отработанное машинное масло. Из него тоже можно получить «чистый» искристый факел. Такие опыты уже проводились. Самое интересное, что полученные результаты можно применить не только для энергетики. Гораздо интереснее то, что подобный способ сжигания сулит революцию в двигателестроении. Представьте себе автомобиль или трактор, в один бак которого заливается обычная вода, в другой бак – сырая нефть. И ничего – двигатель отлично работает, и почти не чадит. В этом есть действительно что-то фантастическое. Однако ученые нисколько не сомневаются в том, что такое им осуществить вполне по силам.

Олег Носков

  • Войдите или зарегистрируйтесь , чтобы отправлять комментарии

Влияние добавки воды в зону горения изучалось в связи с проблемой сжигания водотопливных суспензий – обводненного мазута и водоугольных суспензий (ВУС), а также в связи с проблемой снижения выброса оксидов азота. На состоявшемся в октябре 1982г. в Токио совещании в ряде докладов приведены данные о влиянии замены топлив суспензиями на образование NO x . При использовании жидкого топлива в виде водотопливных эмульсий содержание NO x в дымовых газах обычно снижается на 20 – 30 %, значительно также снижается содержание сажи. Однако при добавке в мазут 10 % воды КПД котла снижается на 0,7 %.

Выводы о влиянии ввода воды или водяного пара, полученные в нескольких проведенных исследованиях, можно разделить на две группы. Часть исследователей утверждает, что даже значительное количество водяных паров не оказывает существенного влияния на выход оксидов азота, другие, наоборот, указывают на эффективность этого метода. Так, согласно некоторым данным при впрыске воды в топочные устройства котлов при сжигании угля, мазута и газа снижение выхода оксидов азота не превышает 10 %. При впрыске воды в количестве 110 % от расхода топлива (или около 14 % от расхода воздуха) в периферийную часть факела в топку, оснащенную мазутной форсункой производительностью 29 Гкал/ч, содержание оксидов азота в продуктах сгорания снизилось всего на 22 %.

Очевидно, что когда водяной пар или вода вводятся за зоной образования оксидов азота, они вообще не должны оказывать влияние на образование NO. Если же они вводятся в топливовоздушную смесь, они должны влиять на процесс горения и образование NO не в меньшей степени, чем аналогичное по объему и теплосодержанию количество рециркулирующих газов.

Известно, что водяные пары влияют на скорость распространения пламени в углеводородных пламенях, следовательно, они могут оказывать влияние на кинетику образования оксида азота и даже при подаче в ядро зоны горения в малом количестве заметно влиять на выход оксидов.

Исследования П. Сингха, выполненные на опытной камере сгорания газовой турбины, показали, что впрыск воды в ядро зоны горения жидкого топлива позволяет снизить образование оксида азота и сажи, а добавление пара к дутьевому воздуху снижает образование оксида азота, но увеличивает выброс оксида углерода и углеводородов. При впрыске воды в количестве 50 % от массы жидкого топлива (6,5 % от расхода воздуха) удаётся снизить выход оксидов азота в 2 раза, при впрыске 160 % воды – примерно в 6 раз. Впрыск в топку 80 кг. воды на 1 Гкал (9 % от массы воздуха) сжигаемого природного газа снижает выброс оксидов азота с 0,66 до 0,22 г/м³, т.е. в 3 раза. Таким образом, введение водяного пара и воды, с точки зрения снижения выхода оксидов азота, является перспективным. Однако следует иметь в виду, что ввод воды или пара в количестве более 5 – 6 % от массы подаваемого в горелки воздуха может оказать отрицательное влияние на полноту сгорания топлива и показатели работы котла. Например, при вводе 12 % пара (по отношению к воздуху) в камеру сгорания ГТУ выход оксида углерода возрастал с 0,015 до 0,030 %, а углеводородов с 0,001 до 0,0022 %. Следует отметить, что подача 9–10 % пара в котёл приводит к снижению его КПД на 4–5 %.

Ввод водяного пара интенсифицирует реакции горения и, прежде всего, дожигание СО за счёт добавочного количества гидроксильного радикала (ОН):

По-видимому, некоторое снижение образования NO при подаче пара или воды в зону горения можно объяснить:

а) снижением максимальной температуры в зоне горения;

б) уменьшением времени пребывания в зоне горения за счёт интенсификации горения СО по реакции (1.9);

в) расходованием гидроксильного радикала в реакции (1.8);

Подача пара или воды в зону горения с целью снижения образования оксидов азота вызывает значительный интерес исследователей, главным образом, в связи со следующими обстоятельствами:

– сравнительно малым расходом среды и отсутствием необходимости строительства трубопроводов большого диаметра;

– положительным воздействием не только на снижение оксидов азота, но и на догорание в факеле оксида углерода и 3,4-бензпирена;

– возможностью использования при сжигании твёрдых топлив.

Впрыск влаги или пара в топку как средство снижения выбросов NO x отличается простотой, лёгкостью регулирования и низкими капитальными затратами. На газомазутных котлах он позволяет снизить выбросы NO x на 20 – 30%, но требует затрат теплоты на парообразование и вызывает увеличение потерь с уходящими газами. При сжигании твёрдого топлива результаты очень незначительные. Следует отметить, что эффективность подавления оксидов азота очень сильно зависит от способа подачи воды в зону горения.

Практическая реализация снижения NO x за счет впрыска пара

Белорусской государственной политехнической академией совместно с Жабинковским сахарным заводом разработано и внедрено эффективное техническое решение, обеспечивающее за счет подачи пара концевых уплотнений и протечек от штоков автоматического стопорного и регулирующих клапанов турбины ТР-6-35/4 в котлы ГМ-50 снижение удельного расхода условного топлива на выработку электроэнергии на 0,9 % (60 т условного топлива в год), улучшение догорания окиси углерода (по результатам испытаний) не менее чем на 40 %, уменьшение концентрации выбросов оксидов азота на 31,6 %, а при распределении всего количества пара уплотнений на два работающих котла при их номинальной нагрузке - в среднем на 20–21 % .

В турбоустановках конденсационного типа (с регулируемыми отборами пара и без отбросов) пар концевых уплотнений обычно отводится в охладители уплотнений. Возможно подключение трубопровода отсоса пара от сальниковых камер уплотнений турбины к подогревателю сетевой воды низкого потенциала или подогревателю подпиточной воды. Недостаток таких установок - снижение тепловой экономичности из-за вытеснения пара отбора следующего за охладителями уплотнений (по линии конденсата) регенеративного подогревателя низкого давления.

В теплофикационных турбоустановках при их эксплуатации в обычном режиме и включенной линии рециркуляции конденсатора теплота пара уплотнений теряется с охлаждающей водой конденсатора.

В тепловых схемах мощных турбоустановок в первую ступень охладителя пара концевых уплотнений (ОУ), находящуюся под небольшим разряжением, с паром из последних камер лабиринтовых уплотнений поступает большое количество воздуха. Так, на энергоблоке мощностью 300 МВт в нее подсасывается свыше 50 % воздуха по массе, а во второй ступени ОУ его содержится уже более 70 %. Между тем известно, что при содержании в паре воздуха в количестве 5 % и более конденсация пара на трубной поверхности происходит крайне неудовлетворительно. При подключении же трубопроводов отсоса пара из уплотнений турбины к топке котла в нее, кроме пара, будет подаваться значительное количество воздуха, вбрасываемого в атмосферу при традиционных тепловых схемах. Такая реконструкция способствует повышению экономичности работы котла.

На турбоустановках с противодавлением тракт подогрева конденсата отсутствует, соответственно нет и ОУ, в котором может подогреваться основной конденсат турбины. При отсутствии дополнительного теплового потребителя такие турбины работают с выбросом пара уплотнений в атмосферу. Это приводит к полной потере и отводимого от уплотнений теплоносителя, и содержащейся в нем теплоты. С учетом пара высокого потенциала от уплотнений штоков клапанов температура выбрасываемой в атмосферу пара воздушной смеси по опытным данным превышает температуру уходящих газов котлов на 50–150 ºС. Включение таких установок представляется наиболее эффективным.

Таким образом, использование разработанного и испытанного, практически не требующего дополнительных капитальных затрат технического решения повышает экономичность котлов, оказывает положительное воздействие на догорание в факеле смеси углерода и бенз-а-пирена, сокращает выбросы вредных примесей в атмосферу.

Снижение выбросов оксидов азота с уходящими газами котлов на тепловых электростанциях может быть достигнуто также при подаче в топку котла (в короб горячего воздуха или во всасывающий коллектор вентилятора) выпара из деаэраторов (в зависимости от типа деаэратора и давления в нём) без уменьшения экономичности установки.

Воду автомобилисты давно использовали в качестве добавки к топливу и добавляли ее ранее капельным способом в состав топливной смеси в впускном тракте ДВС . При этом можно было на бензине марки А-76 вместо А-92 ездить не теряя мощности ДВС потому что добавление водяного пара к парам бензина в камерах сгорания повышало октановое число бензина, поэтому и при работе в этом совмещенном режиме на А-76 -м можно было сильно "вперед" поставить угол опережения без детонации ДВС . А можно ли вообще полностью перевести топливное питание ДВС на один водяной пар вместо дорогого и токсичного бензина? Вполне - только не сразу а постепенно… В этом нам поможет новая технология и явление электрогидродинамического удара в паре.

Искровой электрогидравлический взрыв водяного пара

Исходную идею полезного применения электрогидравлического удара в любой жидкости, например - воде, для преобразования выделяемой в этом эффекте внутренней энергии жидкости(воды) в иные виды энергии вполне можно развить и еще более эффективно применить и для ее фазовых состояний, например для необычной импульсной ЭГД -диссоциации водяного пара в Н 2 -топливнй газ. Ниже об этом - точнее о способах использования этого ЭГД -эффекта для эффективного преобразования пара жидкостей, например воды в новое газообразное водородосодержащее парогазовое топливо и его последующее сжигания путем электрогидравлического взрыва водяного пара.

Перспективность реализации эффекта диссоциации пара жидкости данного ЭГД - эффекта в водяном паре для превращения его в Н 2 - газ - несомненна. Причем таким образом можно получить не только давление на поршень водяного мотора, но одновременно и электроэнергию из воды.

Таким образом мы предлагаем использовать в качестве топлива пар жидкости, например, в моторах нового поколения. Тепло, электроэнергия и полезное избыточное давление от электротеплового взрыва водяного пара(тумана) - реальная фантастика!

Известно, что мельчайшая взвесь в воздухе пылинок или например частичек хлопка определенной концентрации на единицу объема при наличии искры - склонна к взрыву.

Rnrnrn rnrnrn rnrnrn

Причина состоит в возникновении и быстром развитии скоростных цепных реакций ионизации и быстром горении этой среды. Достаточно только небольшой электрической искры для этого взрыва. Этот эффект взрыва мелкодисперсных аэрозолей уже используют, но пока не совсем в полезных целях. Вполне можно полезно запрячь этот физический эффект в полезную работу, например, в бестопливных моторах нового поколения.

Технология превращения пара в Н 2 -топливо и его сжигание -достаточно просты . Суть метода вкратце. Предлагаемый мною новый принцип превращения водяного пара в Н 2 -газообразное топливо состоит в электродуговой диссоциации пара на Н 2 и О 2 с использованием ЭГД -эффекта. В результате появляется возможность получения тепловой, механической энергии и электроэнергии от аномальной энергии электродугового взрыва водяного пара. Этот эффект может быть реализован, например, в необычном электровзрывном паровом(паротопливном) мотор-генераторе, работающем на воде.

Не верите? Тогда внимательнее ознакомьтесь с предлагаемой новейшей технологией. Предлагаемый метод горения пара состоит в его электроразрядной диссоциации и выделении из него локального объема дешевого Н 2 содержащего газообразного топлива из обычного пара с его последующим одновременным сжиганием состоит в следующем.

Предлагаю превратить тепловые потери классического бензинового мотора в полезную работу, а именно испарить воду а потом этот пар сжечь!

Излагаю подробнее. Выполняем последовательно следующие несложные операции :

1) вначале получаем путем нагрева и испарения на выпускном коллекторе ДВС водяной(или водо-топливный) пар высокого давления, который получим из воды от вторичного тепла ДВС в виде «самогонного» аппарата на выпускном коллекторе ДВС ;

3) пропускаем через этот пар высоковольтный электрический разряд, например от штатной но усиленной системы электрического зажигания, причем с регулируемой длительной и мощностью искры;

4) в зоне этого электрического разряда в определенной порции пара получаем начальную запальную порцию Н 2 в процессе этого разряда, поскольку в нем часть молекул пара диссоциирует на молекулы Н 2 и О 2 и частично на атомарные составляющие Н 2 и О 2 ;

5) этот водород практически мгновенно и синхронно с пропусканием электрической искры(дуги) взрывается в зоне электрической искры и еще более повышает температуру в этой стартовой хоне горения пара;

Rnrnrn rnrnrn rnrnrn

6) в результате начинается интенсивное горение всего локального объема этой порции пара, потому что выделяемый и горящий Н 2 еще более ускоряет процесс;

7) в результате лавинного нарастания процесса превращения пара в горючий газ весь объем пара переходит в Н 2 и О 2 и инициирует начало мягкого(жесткого) взрыва водяного пара в зависимости от параметров электрической дуги и параметров пара электроразрядной камеры;

8) в результате развивается ударная волна давления, которая через специальные демпферы передается на рабочий орган, например, через редуктор давления - специальный упругий поршень;

9) сгораемый пар подается через выходной коллектор вновь в электроразрядные камеры, вновь воспламеняется электрическим разрядом, водяной пар взрывается - поршни двигаются - автомобиль едет и таким образом этот процесс циклически повторяется - вода вновь превращается в пар - он взрывается и мотор работает, а потом все сначала потому что пар снова конденсируется и вновь такой электро-разрядный паро-водяной мотор вообще не имеет выхлопа и в выходном тракте.

Пар - это первоклассное топливо для наших любимых автомобилей. Впрочем и на одном воздухе можно ездить и не обязательно на сжатом - а просто умело сжигая его в камерах сгорания.

Ну а топливо…. конечно нужно… но только для начального запуска и прогрева ДВС .

ВНИМАНИЕ!

Чертежи опытных установок и пояснения к изобретению являются НОУ-ХАУ автора предоставляются по ЗАПРОСУ на коммерческой основе

Похожие статьи

© 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.