Амфотерными свойствами обладают. Свойства амфотерных металлов

Амфотерные соединения

Химия – это всегда единство противоположностей.

Посмотрите на периодическую систему.

Некоторые элементы (почти все металлы, проявляющие степени окисления +1 и +2) образуют основные оксиды и гидроксиды. Например, калий образует оксид K 2 O, и гидроксид KOH. Они проявляют основные свойства, например взаимодействуют с кислотами.

K2O + HCl → KCl + H2O

Некоторые элементы (большинство неметаллов и металлы со степенями окисления +5, +6, +7) образуют кислотные оксиды и гидроксиды. Кислотные гидроксиды – это кислородсодержащие кислоты, их называют гидроксидами, потому что в строении есть гидроксильная группа, например, сера образует кислотный оксид SO 3 и кислотный гидроксид H 2 SO 4 (серную кислоту):

Такие соединения проявляют кислотные свойства, например они реагируют с основаниями:

H2SO4 + 2KOH → K2SO4 + 2H2O

А есть элементы, образующие такие оксиды и гидроксиды, которые проявляют и кислотные, и основные свойства. Это явление называется амфотерностью . Таким оксидам и гидроксидам и будет приковано наше внимание в этой статье. Все амфотерные оксиды и гидроксиды — твердые вещества, нерастворимые в воде.

Для начала, как определить является ли оксид или гидроксид амфотерным? Есть правило, немного условное, но все-таки пользоваться им можно:

Амфотерные гидроксиды и оксиды образуются металлами, в степенях окисления +3 и +4 , например (Al 2 O 3 , Al (OH ) 3 , Fe 2 O 3 , Fe (OH ) 3)

И четыре исключения: металлы Zn , Be , Pb , Sn образуют следующие оксиды и гидроксиды: ZnO , Zn ( OH ) 2 , BeO , Be ( OH ) 2 , PbO , Pb ( OH ) 2 , SnO , Sn ( OH ) 2 , в которых проявляют степень окисления +2, но не смотря на это, эти соединения проявляют амфотерные свойства .

Наиболее часто встречающиеся амфотерные оксиды (и соответствующие им гидроксиды): ZnO, Zn(OH) 2 , BeO, Be(OH) 2 , PbO, Pb(OH) 2 , SnO, Sn(OH) 2 , Al 2 O 3 , Al(OH) 3 , Fe 2 O 3 , Fe(OH) 3 , Cr 2 O 3 , Cr(OH) 3 .

Свойства амфотерных соединений запомнить не сложно: они взаимодействуют с кислотами и щелочами .

  • с взаимодействием с кислотами все просто, в этих реакциях амфотерные соединения ведут себя как основные:

Al 2 O 3 + 6HCl → 2AlCl 3 + 3H 2 O

ZnO + H 2 SO 4 → ZnSO 4 + H 2 O

BeO + HNO 3 → Be(NO 3 ) 2 + H 2 O

Точно так же реагируют гидроксиды:

Fe(OH) 3 + 3HCl → FeCl 3 + 3H 2 O

Pb(OH) 2 + 2HCl → PbCl 2 + 2H 2 O

  • С взаимодействием со щелочами немного сложнее. В этих реакциях амфотерные соединения ведут себя как кислоты, и продукты реакции могут быть различными, все зависит от условий.

Или реакция происходит в растворе, или реагирующие вещества берутся твердые и сплавляются.

    Взаимодействие основных соединений с амфотерными при сплавлении.

Разберем на примере гидроксида цинка. Как уже говорилось ранее, амфотерные соединения взаимодействуя с основными, ведут себя как кислоты. Вот и запишем гидроксид цинка Zn (OH ) 2 как кислоту. У кислоты водород спереди, вынесем его: H 2 ZnO 2 . И реакция щелочи с гидроксидом будет протекать как будто он – кислота. «Кислотный остаток» ZnO 2 2- двухвалентный:

2K OH (тв.) + H 2 ZnO 2(тв.) (t ,сплавление)→ K 2 ZnO 2 + 2H 2 O

Полученное вещество K 2 ZnO 2 называется метацинкат калия (или просто цинкат калия). Это вещество – соль калия и гипотетической «цинковой кислоты» H 2 ZnO 2 (солями такие соединения называть не совсем правильно, но для собственного удобства мы про это забудем). Только гидроксид цинка записывать вот так: H 2 ZnO 2 – нехорошо. Пишем как обычно Zn (OH ) 2 , но подразумеваем (для собственного удобства), что это «кислота»:

2KOH (тв.) + Zn (OH ) 2(тв.) (t ,сплавление)→ K 2 ZnO 2 + 2H 2 O

С гидроксидами, в которых 2 группы ОН, все будет так же как и с цинком:

Be(OH) 2( тв .) + 2NaOH ( тв .) (t ,сплавление)→ 2H 2 O + Na 2 BeO 2 (метабериллат натрия, или бериллат)

Pb(OH) 2( тв .) + 2NaOH ( тв .) (t ,сплавление)→ 2H 2 O + Na 2 PbO 2 (метаплюмбат натрия, или плюмбат)

С амфотерными гидроксидов с тремя группами OH (Al (OH ) 3 , Cr (OH ) 3 , Fe (OH ) 3) немного иначе.

Разберем на примере гидроксида алюминия: Al (OH ) 3 , запишем в виде кислоты: H 3 AlO 3 , но в таком виде не оставляем, а выносим оттуда воду:

H 3 AlO 3 – H 2 O → HAlO 2 + H 2 O .

Вот с этой «кислотой» (HAlO 2) мы и работаем:

HAlO 2 + KOH → H 2 O + KAlO 2 (метаалюминат калия, или просто алюминат)

Но гидроксид алюминия вот так HAlO 2 записывать нельзя, записываем как обычно, но подразумеваем там «кислоту»:

Al(OH) 3( тв .) + KOH ( тв .) (t ,сплавление)→ 2H 2 O + KAlO 2 (метаалюминат калия)

То же самое и с гидроксидом хрома:

Cr(OH) 3 → H 3 CrO 3 → HCrO 2

Cr(OH) 3( тв .) + KOH ( тв .) (t ,сплавление)→ 2H 2 O + KCrO 2 (метахромат калия,

НО НЕ ХРОМАТ, хроматы – это соли хромовой кислоты).

С гидроксидами содержащими четыре группы ОН точно так же: выносим вперед водород и убираем воду:

Sn(OH) 4 → H 4 SnO 4 → H 2 SnO 3

Pb(OH) 4 → H 4 PbO 4 → H 2 PbO 3

Следует помнить, что свинец и олово образуют по два амфотерных гидроксида: со степенью окисления +2 (Sn (OH ) 2 , Pb (OH ) 2), и +4 (Sn (OH ) 4 , Pb (OH ) 4).

И эти гидроксиды будут образовывать разные «соли»:

Степень окисления

Формула гидроксида

Sn (OH ) 2

Pb (OH ) 2

Sn (OH ) 4

Pb (OH ) 4

Формула гидроксида в виде кислоты

H 2 SnO 2

H 2 PbO 2

H 2 SnO 3

H 2 PbO 3

Соль (калиевая)

K 2 SnO 2

K 2 PbO 2

K 2 SnO 3

K 2 PbO 3

Название соли

метастаннАТ

метаблюмбАТ

Те же принципы, что и в названиях обычных «солей», элемент в высшей степени окисления – суффикс АТ, в промежуточной – ИТ.

Такие «соли» (метахроматы, метаалюминаты, метабериллаты, метацинкаты и т.д.) получаются не только в результате взаимодействия щелочей и амфотерных гидроксидов. Эти соединения всегда образуются, когда соприкасаются сильноосновный «мир» и амфотерный (при сплавлении). То есть точно так же как и амфотерные гидроксиды со щелочами будут реагировать и амфотерные оксиды, и соли металлов, образующих амфотерные оксиды (соли слабых кислот). И вместо щелочи можно взять сильноосновный оксид, и соль металла, образующего щелочь (соль слабой кислоты).

Взаимодействия:

Запомните, реакции, приведенные ниже, протекают при сплавлении.

    Амфотерного оксида с сильноосновным оксидом:

ZnO (тв.) + K 2 O (тв.) (t ,сплавление)→ K 2 ZnO 2 (метацинкат калия, или просто цинкат калия)

    Амфотерного оксида со щелочью:

ZnO (тв.) + 2KOH (тв.) (t ,сплавление)→ K 2 ZnO 2 + H 2 O

    Амфотерного оксида с солью слабой кислоты и металла, образующего щелочь:

ZnO (тв.) + K 2 CO 3( тв .) (t, сплавление)→ K 2 ZnO 2 + CO 2

    Амфотерного гидроксида с сильноосновным оксидом:

Zn(OH) 2 (тв.) + K 2 O (тв.) (t ,сплавление)→ K 2 ZnO 2 + H 2 O

    Амфотерного гидроксида со щелочью:

Zn (OH ) 2(тв.) + 2KOH (тв.) (t ,сплавление)→ K 2 ZnO 2 + 2H 2 O

    Амфотерного гидроксида с солью слабой кислоты и металла, образующего щелочь:

Zn (OH ) 2(тв.) + K 2 CO 3(тв.) (t ,сплавление)→ K 2 ZnO 2 + CO 2 + H 2 O

    Соли слабой кислоты и металла, образующего амфотерные соединение с сильноосновным оксидом:

ZnCO 3 (тв.) + K 2 O (тв.) (t ,сплавление)→ K 2 ZnO 2 + CO 2

    Соли слабой кислоты и металла, образующего амфотерные соединение со щелочью:

ZnCO 3(тв.) + 2KOH (тв.) (t ,сплавление)→ K 2 ZnO 2 + CO 2 + H 2 O

    Соли слабой кислоты и металла, образующего амфотерные соединение с солью слабой кислоты и металла, образующего щелочь:

ZnCO 3(тв.) + K 2 CO 3( тв .) (t, сплавление)→ K 2 ZnO 2 + 2CO 2

Ниже представлена информация по солям амфотерных гидроксидов, красным помечены наиболее встречающиеся в ЕГЭ.

Гидроксид

Гидроксид в виде кислоты

Кислотный остаток

Название соли

BeO

Be(OH) 2

H 2 BeO 2

BeO 2 2-

K 2 BeO 2

Метабериллат (бериллат)

ZnO

Zn(OH) 2

H 2 ZnO 2

ZnO 2 2-

K 2 ZnO 2

Метацинкат (цинкат)

Al 2 O 3

Al(OH) 3

HAlO 2

AlO 2

KAlO 2

Метаалюминат (алюминат)

Fe 2 O 3

Fe(OH) 3

HFeO 2

FeO 2 —

KFeO 2

Метаферрат (НО НЕ ФЕРРАТ)

Sn(OH) 2

H 2 SnO 2

SnO 2 2-

K 2 SnO 2

Pb(OH) 2

H 2 PbO 2

PbO 2 2-

K 2 PbO 2

SnO 2

Sn (OH ) 4

H 2 SnO 3

SnO 3 2-

K 2 SnO 3

МетастаннАТ (станнат)

PbO 2

Pb (OH ) 4

H 2 PbO 3

PbO 3 2-

K 2 PbO 3

МетаблюмбАТ (плюмбат)

Cr 2 O 3

Cr(OH) 3

HCrO 2

CrO 2 —

KCrO 2

Метахромат (НО НЕ ХРОМАТ)

    Взаимодействие амфотерных соединений с растворами ЩЕЛОЧЕЙ (здесь только щелочи).

В ЕГЭ это называют «растворением гидроксида алюминия (цинка, бериллия и т.д.) щелочи». Это обусловлено способностью металлов в составе амфотерных гидроксидов в присутствии избытка гидроксид-ионов (в щелочной среде) присоединять к себе эти ионы. Образуется частица с металлом (алюминием, бериллием и т.д.) в центре, который окружен гидроксид-ионами. Эта частица становится отрицательно-заряженной (анионом) за счет гидроксид-ионов, и называться этот ион будет гидроксоалюминат, гидроксоцинкат, гидроксобериллат и т.д.. Причем процесс может протекать по-разному металл может быть окружен разным числом гидроксид-ионов.

Мы будем рассматривать два случая: когда металл окружен четырьмя гидроксид-ионами , и когда он окружен шестью гидроксид-ионами .

Запишем сокращенное ионное уравнение этих процессов:

Al(OH) 3 + OH — → Al(OH) 4 —

Образовавшийся ион называется Тетрагидроксоалюминат-ион. Приставка «тетра-» прибавляется, потому что гидроксид-иона четыре. Тетрагидроксоалюминат-ион имеет заряд -, так как алюминий несет заряд 3+, а четыре гидроксид-иона 4-, в сумме получается -.

Al(OH) 3 + 3OH — → Al(OH) 6 3-

Образовавшийся в этой реакции ион называется гексагидроксоалюминат ион. Приставка «гексо-» прибавляется, потому что гидроксид-иона шесть.

Прибавлять приставку, указывающую на количество гидроксид-ионов обязательно . Потому что если вы напишете просто «гидроксоалюминат», не понятно, какой ион вы имеете в виду: Al (OH ) 4 — или Al (OH ) 6 3- .

При взаимодействии щелочи с амфотерным гидроксидом в растворе образуется соль. Катион которой – это катион щелочи, а анион – это сложный ион, образование которого мы рассмотрели ранее. Анион заключается в квадратные скобки .

Al (OH ) 3 + KOH → K (тетрагидроксоалюминат калия)

Al (OH ) 3 + 3KOH → K 3 (гексагидроксоалюминат калия)

Какую именно (гекса- или тетра-) соль вы напишете как продукт – не имеет никакого значения. Даже в ответниках ЕГЭ написано: «…K 3 (допустимо образование K ». Главное не забывайте следить, чтобы все индексы были верно проставлены. Следите за зарядами, и имейте ввиду, что сумма их должна быть равна нулю.

Кроме амфотерных гидроксидов, со щелочами реагируют амфотерные оксиды. Продукт будет тот же. Только вот если вы запишете реакцию вот так:

Al 2 O 3 + NaOH → Na

Al 2 O 3 + NaOH → Na 3

Но эти реакции у вас не уравняются. Надо добавить воду в левую часть, взаимодейтсиве ведь происходит в растворе, воды там дотаточно, и все уравняется:

Al 2 O 3 + 2NaOH + 3H 2 O → 2Na

Al 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

Помимо амфотерных оксидов и гидроксидов, с растворами щелочей взаимодействуют некоторые особо активные металлы, которые образуют амфотерные соединения. А именно это: алюминий, цинк и бериллий. Чтобы уравнялось, слева тоже нужна вода. И, кроме того, главное отличие этих процессов – это выделение водорода:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

2Al + 6NaOH + 6H 2 O → 2Na 3 + 3H 2

В таблице ниже приведены наиболее распространенные в ЕГЭ примеры свойства амфотерных соединений:

Амфотерное вещество

Название соли

Al 2 O 3

Al(OH) 3

Тетрагидроксоалюминат натрия

Al(OH) 3 + NaOH → Na

Al 2 O 3 + 2NaOH + 3H 2 O → 2Na

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

Na 3

Гексагидроксоалюминат натрия

Al(OH) 3 + 3NaOH → Na 3

Al 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

2Al + 6NaOH + 6H 2 O → 2Na 3 + 3H 2

Zn(OH) 2

K 2

Тетрагидроксоцинкат натрия

Zn(OH) 2 + 2NaOH → Na 2

ZnO + 2NaOH + H 2 O → Na 2

Zn + 2NaOH + 2H 2 O → Na 2 + H 2

K 4

Гексагидроксоцинкат натрия

Zn(OH) 2 + 4NaOH → Na 4

ZnO + 4NaOH + H 2 O → Na 4

Zn + 4NaOH + 2H 2 O → Na 4 + H 2

Be(OH) 2

Li 2

Тетрагидроксобериллат лития

Be(OH) 2 + 2LiOH → Li 2

BeO + 2LiOH + H 2 O → Li 2

Be + 2LiOH + 2H 2 O → Li 2 + H 2

Li 4

Гексагидроксобериллат лития

Be(OH) 2 + 4LiOH → Li 4

BeO + 4LiOH + H 2 O → Li 4

Be + 4LiOH + 2H 2 O → Li 4 + H 2

Cr 2 O 3

Cr(OH) 3

Тетрагидроксохромат натрия

Cr(OH) 3 + NaOH → Na

Cr 2 O 3 + 2NaOH + 3H 2 O → 2Na

Na 3

Гексагидроксохромат натрия

Cr(OH) 3 + 3NaOH → Na 3

Cr 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

Fe 2 O 3

Fe(OH) 3

Тетрагидроксоферрат натрия

Fe(OH) 3 + NaOH → Na

Fe 2 O 3 + 2NaOH + 3H 2 O → 2Na

Na 3

Гексагидроксоферрат натрия

Fe(OH) 3 + 3NaOH → Na 3

Fe 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

Полученные в этих взаимодействиях соли реагируют с кислотами, образуя две другие соли (соли данной кислоты и двух металлов):

2Na 3 + 6H 2 SO 4 → 3Na 2 SO 4 + Al 2 (SO 4 ) 3 + 12H 2 O

Вот и все! Ничего сложного. Главное не путайте, помните что образуется при сплавлении, что в растворе. Очень часто задания по этому вопросу попадаются в B части.

Амфотерные оксиды реагируют с сильными кислотами , образуя соли этих кислот. Такие реакции являются проявлением основных свойств амфотерных оксидов, например:

ZnO + H 2 SO 4 → ZnSO 4 + H 2 O

Они также реагируют с сильными щелочами , проявляя этим свои кислотные свойства, например:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O Амфотерные оксиды могут реагировать с щелочами двояко: в растворе и в расплаве.

  • При реакции с щёлочью в расплаве образуется обычная средняя соль(как показано на примере выше).
  • При реакции с щёлочью в растворе образуется комплексная соль.

Al 2 O 3 + 2NaOH + 3H 2 O → 2Na (В данном случае образуется тетрагидроксоаллюминат натрия)

Для каждого амфотерного металла есть свое координационное число . Для Be и Zn - это 4; Для Al - это 4 или 6; Для Cr - это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Примеры

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Амфотерные оксиды" в других словарях:

    Оксиды металлов - это соединения металлов с кислородом. Многие из них могут соединяться с одной или несколькими молекулами воды с образованием гидроксидов. Большинство оксидов являются основными, так как их гидроксиды ведут себя как основания. Однако некоторые… … Официальная терминология

    ОКСИДЫ, неорганические соединения, в которых КИСЛОРОД связан с другим элементом. Оксиды часто образуются при горении элемента на воздухе или в присутствии кислорода. Так, магний (Mg) при горении образует оксид магния (MgO). Оксиды бывают… … Научно-технический энциклопедический словарь

    Оксид (окисел, окись) бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй… … Википедия

    Амфотерные гидроксиды неорганические соединения, гидроксиды амфотерных элементов, в зависимости от условий проявляющие свойства кислотных или основных гидроксидов. Содержание 1 Общие свойства 2 Получение … Википедия

    оксиды - Соединение химического элемента с кислородом. По химическим свойствам все оксиды делятся на солеобразующие (наприме, Na2О, MgO, Al2O3, SiO2, P2O5, SO3, Cl2O7) и несолеобразующие (например, СО, N2O, NO, H2O). Солеобразующие оксиды подразделяют на… … Справочник технического переводчика

    ОКСИДЫ - хим. соединения элементов с кислородом (устаревшее название окислы); один из важнейших классов хим. веществ. О. образуются чаще всего при непосредственном окислении простых и сложных веществ. Напр. при окислении углеводородов образуются О.… … Большая политехническая энциклопедия

    Соединения элементов с кислородом. В О. степень окисления атома кислорода Ч2. К О. относятся все соед. элементов с кислородом, кроме содержащих атомы О, соединенные друг с другом (пероксиды, надпероксиды, озо ниды), и соед. фтора с кислородом… … Химическая энциклопедия

    Окиси, окислы, соединения хим. элементов с кислородом. По хим. св вам все О. делятся на солеобразующие и несолеобразующие. Солеобразующие О. подразделяются на основные, кислотные и амфотерные (продукты их взаимодействия с водой являются… … Большой энциклопедический политехнический словарь

    Основные оксиды оксиды 1, 2 и некоторых 3 валентных металлов. К ним относятся: оксиды металлов главной подгруппы первой группы (щелочные металлы) Li Fr оксиды металлов главной подгруппы второй группы (щелочноземельные металлы)… … Википедия

    Несолеобразующие оксиды оксиды, не проявляющие ни кислотных, ни основных, ни амфотерных свойств и не образующие соли. Раньше такие оксиды называли индифферентными или безразличными, но это неверно, так как по своей химической природе данные … Википедия

Соединения, которые проявляют химическую двойственность, называются амфотерными. Различают следующие виды подобных соединений: - оксиды (SnO 2, PbO, PbO 2, Cr 2 O 3, Cu 2 O); - металлы (Al, Pb, Zn, Fe, Cu, Be, Cr); - гидроксиды (Zn(OH) 2 , Al(OH) 3, Fe(OH) 3).

Данные соединения могут взаимодействовать как с основаниями, так и с кислотами. Такими свойствами обладают переходные металлы и элементы побочных групп. Металлы такого вида и сплавы из них характеризуются рядом уникальных свойств, благодаря которым они получили широкое распространение во многих отраслях промышленности.

Подобные металлы легко взаимодействуют с щелочью и кислотой, практически не растворяются в воде и просты в обработке. Поведение амфотерных соединений во время химической реакции зависит от свойств растворителя и условий ее проведения, природы реагентов и других различных факторов.

Самыми распространенными металлами, обладающими химической двойственностью, являются алюминий, цинк, хром.

Амфотерные сплавы отличаются высокой прочностью и имеют хорошую пластичность. Им также свойственно магнитомягкое поведение, низкие акустические потери и высокое электросопротивление. Некоторые амфотерные металлы обладают высокой коррозийной стойкостью. Амфотерные сплавы подвергаются холодной прокатке в фольгу даже при комнатной температуре.

Применение амфотерных материалов

Металлические стекла, в основу которых входят Ni, Fe и Co, являются одними из самых высокопрочных материалов. Сплавы амфотерных металлов часто используют для изготовления изделий, которые контактируют с агрессивной средой. Их применяют в производстве кабелей и для армирования труб высокого давления, при изготовлении металлических элементов шин и различных конструкций, эксплуатация которых подразумевает погружение в морскую воду.

Металлы, обладающие двойственными химическими свойствами, широко используются для изготовления пружин часовых механизмов, сейсмических датчиков, весов, датчиков крутящего момента и скорости, индикаторов часового типа.

Из амфотерной ленты производят множество бытовых предметов: рулетки, столовые приборы, различная посуда, бритвенные лезвия. Уникальные сплавы также нашли применение в различном звуко- и видеозаписывающем оборудовании.

С течением времени появляется все больше новых химических соединений, обладающих амфотерностью. Подобные материалы по праву считаются материалами будущего, но их повсеместному распространению препятствует ряд определенных факторов: небольшие размеры получаемых изделий (лент и проволок), высокая себестоимость уникальных сплавов, низкая свариваемость некоторых элементов.

Амфотерные металлы - это простые вещества, которые по структуре, химическим и сходны с металлической группой элементов. Сами по себе металлы не могут проявлять амфотерных свойств, в отличие от их соединений. Например, оксиды и гидроксиды некоторых металлов обладают двойственной химической природой - в одних условиях они ведут себя как кислоты, а в других обладают свойствами щелочей.

Основные амфотерные металлы - это алюминий, цинк, хром, железо. К этой же группе элементов можно отнести бериллий и стронций.

амфотерность?

Впервые это свойство было обнаружено достаточно давно. А термин «амфотерные элементы» был введен в науку в 1814 году известными химиками Л. Тенаром и Ж. Гей-Люссаком. В те времена химические соединения принято было разделять на группы, которые соответствовали их основным свойствами во время реакций.

Тем не менее, группа оксидов и оснований обладала двойственными способностями. В некоторых условиях такие вещества вели себя как щелочи, в других же, наоборот, действовали как кислоты. Именно так и возник термин «амфотерность». Для таких поведение во время кислотно-основной реакции зависит от условий ее проведения, природы участвующих реагентов, а также от свойств растворителя.

Интересно, что в естественных условиях амфотерные металлы могут взаимодействовать как с щелочью, так и с кислотой. Например, во время реакции алюминия с образуется сульфат алюминия. А при реакции этого же метала с концентрированной щелочью образуется комплексная соль.

Амфотерные основания и их основные свойства

При нормальных условиях это твердые вещества. Они практически не растворяются в воде и считаются довольно слабыми электролитами.

Основной метод получения таких оснований - это реакция соли металла с небольшим количеством щелочи. Реакцию осаждения нужно проводить медленно и осторожно. Например, при получении гидроксида цинка в пробирку с хлоридом цинка осторожно, каплями добавляют едкий натр. Каждый раз нужно несильно встряхивать емкость, чтобы увидеть белый осадок металла на дне посуды.

С кислотами и амфотерные вещества реагируют как основания. Например, при реакции гидроксида цинка с соляной кислотой образуется хлорид цинка.

А вот во время реакций с основаниями амфотерные основания ведут себя как кислоты.

Кроме того, при сильном нагревании разлагаются с образованием соответствующего амфотерного оксида и воды.

Самые распространенные амфотерные металлы: краткая характеристика

Цинк относится к группе амфотерных элементов. И хотя сплавы этого вещества широко использовались еще в древних цивилизациях, в чистом виде его смогли выделить лишь в 1746 году.

Чистый металл представляет собой достаточно хрупкое вещество голубоватого цвета. На воздухе цинк быстро окисляется - его поверхность тускнеет и покрывается тонкой пленкой оксида.

В природе цинк существует преимущественно в виде минералов - цинкитов, смитсонитов, каламитов. Самое известное вещество - это цинковая обманка, которая состоит из сульфида цинка. Самые большие месторождения этого минерала находятся в Боливии и Австралии.

Алюминий на сегодняшний день считается наиболее распространенным металлом на планете. Его сплавы использовались на протяжении многих столетий, а в 1825 году вещество было выделено в чистом виде.

Чистый алюминий представляет собой легкий металл серебристого цвета. Он легко поддается механической обработке и литью. Этот элемент обладает высокой электро- и теплопроводностью. Кроме того, данный металл стоек к коррозии. Дело в том, что поверхность его покрыта тонкой, но очень стойкой оксидной пленкой.

На сегодняшний день алюминий широко применяется в промышленности.

13.1. Определения

К важнейшим классам неорганических веществ по традиции относят простые вещества (металлы и неметаллы), оксиды (кислотные, основные и амфотерные), гидроксиды (часть кислот, основания, амфотерные гидроксиды) и соли. Вещества, относящиеся к одному и тому же классу, обладают сходными химическими свойствами. Но вы уже знаете, что при выделении этих классов используют разные классификационные признаки.
В этом параграфе мы окончательно сформулируем определения всех важнейших классов химических веществ и разберемся, по каким признакам выделяются эти классы.
Начнем с простых веществ (классификация по числу элементов, входящих в состав вещества). Их обычно делят на металлы и неметаллы (рис. 13.1-а ).
Определение понятия " металл" вы уже знаете.

Из этого определения видно, что главным признаком, позволяющим нам разделить простые вещества на металлы и неметаллы, является тип химической связи.

В большинстве неметаллов связь ковалентная. Но есть еще и благородные газы (простые вещества элементов VIIIA группы), атомы которых в твердом и жидком состоянии связаны только межмолекулярными связями. Отсюда и определение.

По химическим свойствам среди металлов выделяют группу так называемых амфотерных металлов. Это название отражает способность этих металлов реагировать как с кислотами, так и со щелочами (как амфотерные оксиды или гидроксиды) (рис. 13.1-б ).
Кроме этого, из-за химической инертности среди металлов выделяют благородные металлы. К ним относят золото, рутений, родий, палладий, осмий, иридий, платину. По традиции к благородным металлам относят и несколько более реакционно-способное серебро, но не относят такие инертные металлы, как тантал, ниобий и некоторые другие. Есть и другие классификации металлов, например, в металлургии все металлы делят на черные и цветные, относя к черным металлам железо и его сплавы.
Из сложных веществ наибольшее значение имеют, прежде всего, оксиды (см.§2.5), но так как в их классификации учитываются кислотно-основные свойства этих соединений, мы сначала вспомним, что такое кислоты и основания .

Таким образом, мы выделяем кислоты и основания из общей массы соединений, используя два признака: состав и химические свойства.
По составу кислоты делятся на кислородсодержащие (оксокислоты ) и бескислородные (рис. 13.2).

Следует помнить, что кислородсодержащие кислоты по своему строению являются гидроксидами .

Примечание. По традиции для бескислородных кислот слово кислота" используется в тех случаях, когда речь идет о растворе соответствующего индивидуального вещества, например: вещество HCl называют хлороводородом, а его водный раствор – хлороводородной или соляной кислотой.

Теперь вернемся к оксидам. Мы относили оксиды к группе кислотных или основных по тому, как они реагируют с водой (или по тому, из кислот или из оснований они получаются). Но с водой реагируют далеко не все оксиды, зато большинство из них реагирует с кислотами или щелочами, поэтому оксиды лучше классифицировать по этому свойству.

Существует несколько оксидов, которые в обычных условиях не реагируют ни с кислотами, ни со щелочами. Такие оксиды называют несолеобразующими . Это, например, CO, SiO, N 2 O, NO, MnO 2 . В отличие от них, остальные оксиды называют солеобразующими (рис. 13.3).

Как вы знаете, большинство кислот и оснований относится к гидроксидам . По способности гидроксидов реагировать и с кислотами, и со щелочами среди них (как и среди оксидов) выделяют амфотерные гидроксиды (рис. 13.4).

Теперь нам осталось дать определение солей . Термин " соль" используется издавна. По мере развития науки, его смысл неоднократно изменялся, расширялся и уточнялся. В современном понимании соль – это ионное соединение, но традиционно к солям не относят ионные оксиды (так как их называют основными оксидами), ионные гидроксиды (основания), а также ионные гидриды, карбиды, нитриды и т. п. Поэтому упрощенно можно сказать, что

Можно дать и другое, более точное, определение солей.

Давая такое определение, соли оксония обычно относят и к солям, и к кислотам.
Соли принято подразделять по составу на кислые , средние и основные (рис. 13.5).

То есть в состав анионов кислых солей входят атомы водорода, связанные ковалентными связями с другими атомами анионов и способные отрываться под действием оснований.

Основные соли обычно имеют очень сложный состав и часто нерастворимы в воде. Типичный пример основной соли – минерал малахит Cu 2 (OH) 2 CO 3 .

Как видите, важнейшие классы химических веществ выделяются по разным классификационным признакам. Но по какому бы признаку мы не выделяли класс веществ, все вещества этого класса обладают общими химическими свойствами.

В этой главе вы познакомитесь с наиболее характерными химическими свойствами веществ-представителей этих классов и с самыми важными способами их получения.

МЕТАЛЛЫ, НЕМЕТАЛЛЫ, АМФОТЕРНЫЕ МЕТАЛЛЫ, КИСЛОТЫ, ОСНОВАНИЯ, ОКСОКИСЛОТЫ, БЕСКИСЛОРОДНЫЕ КИСЛОТЫ, ОСНОВНЫЕ ОКСИДЫ, КИСЛОТНЫЕ ОКСИДЫ, АМФОТЕРНЫЕ ОКСИДЫ, АМФОТЕРНЫЕ ГИДРОКСИДЫ, СОЛИ, КИСЛЫЕ СОЛИ, СРЕДНИЕ СОЛИ, ОСНОВНЫЕ СОЛИ
1.Где в естественной системе элементов расположены элементы, образующие металлы, а где – элементы, образующие неметаллы?
2.Напишите формулы пяти металлов и пяти неметаллов.
3.Составьте структурные формулы следующих соединений:
(H 3 O)Cl, (H 3 O) 2 SO 4 , HCl, H 2 S, H 2 SO 4 , H 3 PO 4 , H 2 CO 3 , Ba(OH) 2 , RbOH.
4.Каким оксидам соответствуют следующие гидроксиды:
H 2 SO 4 , Ca(OH) 2 , H 3 PO 4 , Al(OH) 3 , HNO 3 , LiOH?
Каков характер (кислотный или основный) каждого из этих оксидов?
5.Среди следующих веществ найдите соли. Составьте их структурные формулы.
KNO 2 , Al 2 O 3 , Al 2 S 3 , HCN, CS 2 , H 2 S, K 2 , SiCl 4 , CaSO 4 , AlPO 4
6.Составьте структурные формулы следующих кислых солей:
NaHSO 4 , KHSO 3 , NaHCO 3 , Ca(H 2 PO 4) 2 , CaHPO 4 .

13.2. Металлы

В кристаллах металлов и в их расплавах атомные остовы связывает единое электронное облако металлической связи. Как и отдельный атом элемента, образующего металл, кристалл металла обладает способностью отдавать электроны. Склонность металла отдавать электроны зависит от его строения и, прежде всего, от размера атомов: чем больше атомные остовы (то есть чем больше ионные радиусы), тем легче металл отдает электроны.
Металлы – простые вещества, поэтому степень окисления атомов в них равна 0. Вступая в реакции, металлы почти всегда изменяют степень окисления своих атомов. Атомы металлов, не обладая склонностью принимать электроны, могут только их отдавать или обобществлять. Электроотрицательность этих атомов невелика, поэтому даже при образовании ими ковалентных связей атомы металлов приобретают положительную степень окисления. Следовательно, все металлы в той или иной степени проявляют восстановительные свойства . Они реагируют:
1) С неметаллами (но не все и не со всеми):
4Li + O 2 = 2Li 2 O,
3Mg + N 2 = Mg 3 N 2 (при нагревании),
Fe + S = FeS (при нагревании).
Наиболее активные металлы легко реагируют с галогенами и кислородом, а с очень прочными молекулами азота реагирует только литий и магний.
Реагируя с кислородом, большинство металлов образует оксиды, а наиболее активные – пероксиды (Na 2 O 2 , BaO 2) и другие более сложные соединения.
2) С оксидами менее активных металлов:
2Ca + MnO 2 = 2CaO + Mn (при нагревании),
2Al + Fe 2 O 3 = Al 2 O 3 + 2Fe (с предварительным нагреванием).
Возможность протекания этих реакций определяется общим правилом (ОВР протекают в направлении образования более слабых окислителя и восстановителя) и зависит не только от активности металла (более активный, то есть легче отдающий свои электроны металл восстанавливает менее активный), но и от энергии кристаллической решетки оксида (реакция протекает в направлении образования более " прочного" оксида).
3) С растворами кислот (§ 12.2):
Mg + 2H 3 O = Mg 2B + H 2 + 2H 2 O, Fe + 2H 3 O = Fe 2 + H 2 + 2H 2 O,
Mg + H 2 SO 4p = MgSO 4p + H 2 , Fe + 2HCl p = FeCl 2p + H 2 .
В этом случае возможность реакции легко определяется по ряду напряжений (реакция протекает, если металл в ряду напряжений стоит левее водорода).
4) C растворами солей (§ 12.2):

Fe + Cu 2 = Fe 2 + Cu, Cu + 2Ag = Cu 2 +2Ag,
Fe + CuSO 4p = Cu + FeSO 4p , Cu + 2AgNO 3p = 2Ag + Cu(NO 3) 2p .
Для определения возможности протекания реакции здесь также используется ряд напряжений.
5) Кроме этого, наиболее активные металлы (щелочные и щелочноземельные) реагируют с водой (§ 11.4):
2Na + 2H 2 O = 2Na + H 2 + 2OH , Ca + 2H 2 O = Ca 2 + H 2 + 2OH ,
2Na + 2H 2 O = 2NaOH p + H 2 , Ca + 2H 2 O = Ca(OH) 2p + H 2 .
Во второй реакции возможно образование осадка Ca(OH) 2 .
Большинство металлов в промышленности получают, восстанавливая их оксиды:
Fe 2 O 3 + 3CO = 2Fe + 3CO 2 (при высокой температуре),
MnO 2 + 2C = Mn + 2CO (при высокой температуре).
В лаборатории для этого часто используют водород:

Наиболее активные металлы, как в промышленности, так и в лаборатории, получают с помощью электролиза (§ 9.9).
В лаборатории менее активные металлы могут быть восстановлены из растворов их солей более активными металлами (ограничения см. в § 12.2).

1.Почему металлы не склонны проявлять окислительные свойства?
2.От чего в первую очередь зависит химическая активность металлов?
3.Осуществите превращения
а) Li Li 2 O LiOH LiCl; б) NaCl Na Na 2 O 2 ;
в) FeO Fe FeS Fe 2 O 3 ; г) CuCl 2 Cu(OH) 2 CuO Cu CuBr 2 .
4.Восстановите левые части уравнений:
а) ... = H 2 O + Cu;
б) ... = 3CO + 2Fe;
в) ... = 2Cr + Al 2 O 3
. Химические свойства металлов.

13.3. Неметаллы

В отличие от металлов, неметаллы очень сильно отличаются друг от друга по своим свойствам – как физическим, так и химическим, и даже по типу строения. Но, не считая благородных газов, во всех неметаллах связь между атомами ковалентная.
Атомы, входящие в состав неметаллов, обладают склонностью к присоединению электронов, но, образуя простые вещества, " удовлетворить" эту склонность не могут. Поэтому неметаллы (в той или иной степени) обладают склонностью присоединять электроны, то есть могут проявлять окислительные свойства . Окислительная активность неметаллов зависит, с одной стороны, от размеров атомов (чем меньше атомы, тем активнее вещество), а с другой – от прочности ковалентных связей в простом веществе (чем прочнее связи, тем менее активно вещество). При образовании ионных соединений атомы неметаллов действительно присоединяют " лишние" электроны, а при образовании соединений с ковалентными связями – лишь смещают в свою сторону общие электронные пары. И в том, и в другом случае степень окисления уменьшается.
Неметаллы могут окислять:
1) металлы (вещества более или менее склонные отдавать электроны):
3F 2 + 2Al = 2AlF 3 ,
O 2 + 2Mg = 2MgO (с предварительным нагреванием),
S + Fe = FeS (при нагревании),
2C + Ca = CaC 2 (при нагревании).
2) другие неметаллы (менее склонные принимать электроны):
2F 2 + C = CF 4 (при нагревании),
O 2 + S = SO 2 (с предварительным нагреванием),
S + H 2 = H 2 S (при нагревании),
3) многие сложные вещества:
4F 2 + CH 4 = CF 4 + 4HF,
3O 2 + 4NH 3 = 2N 2 + 6H 2 O (при нагревании),
Cl 2 + 2HBr = Br 2 + 2HCl.
Здесь возможность протекания реакции определяется прежде всего прочностью связей в реагентах и продуктах реакции и может быть определена путем расчета G .
Самый сильный окислитель – фтор. Ненамного уступают ему кислород и хлор (обратите внимание на их положение в системе элементов).
В значительно меньшей степени окислительные свойства проявляют бор, графит (и алмаз), кремний и другие простые вещества, образованные элементами, примыкающими к границе между металлами и неметаллами. Атомы этих элементов менее склонны присоединять электроны. Именно эти вещества (особенно графит и водород) способны проявлять восстановительные свойства :
2С + MnO 2 = Mn + 2CO,
4H 2 + Fe 3 O 4 = 3Fe + 4H 2 O.
Остальные химические свойства неметаллов вы изучите в следующих разделах при знакомстве с химией отдельных элементов (как это было в случае кислорода и водорода). Там же вы изучите и способы получения этих веществ.

1.Какие из приведенных веществ являются неметаллами: Be, C, Ne, Pt, Si, Sn, Se, Cs, Sc, Ar, Ra?
2.Приведите примеры неметаллов, при обычных условиях представляющих собой а) газы, б) жидкости, в) твердые вещества.
3.Приведите примеры а) молекулярных и б) немолекулярных простых веществ.
4.Приведите по три примера химических реакций, в которых окислительные свойства проявляет а) хлор и б) водород.
5.Приведите три примера химических реакций, отсутствующие в тексте параграфа, в которых водород проявляет восстановительные свойства.
6.Осуществите превращения:
а) P 4 P 4 O 10 H 3 PO 4 ; б) H 2 NaH H 2 ; в) Cl 2 NaCl Cl 2 .
Химические свойства неметаллов.

13.4. Основные оксиды

Вы уже знаете, что все основные оксиды – твердые немолекулярные вещества с ионной связью.
К основным оксидам относятся:
а) оксиды щелочных и щелочноземельных элементов,
б) оксиды некоторых других элементов, образующих металлы, в низших степенях окисления, например: СrO, MnO, FeO, Ag 2 O и др.

В их состав входят однозарядные, двухзарядные (очень редко трехзарядные катионы) и оксид-ионы. Наиболее характерные химические свойства основных оксидов как раз и связаны с присутствием в них двухзарядных оксид-ионов (очень сильных частиц-оснований). Химическая активность основных оксидов зависит прежде всего от прочности ионной связи в их кристаллах.
1) Все основные оксиды реагируют с растворами сильных кислот (§ 12.5):
Li 2 O + 2H 3 O = 2Li + 3H 2 O, NiO + 2H 3 O = Ni 2 +3H 2 O,
Li 2 O + 2HCl p = 2LiCl p + H 2 O, NiO + H 2 SO 4p = NiSO 4p + H 2 O.
В первом случае кроме реакции с ионами оксония протекает еще и реакция с водой, но, так как ее скорость значительно меньше, ею можно пренебречь, тем более, что в итоге все равно получаются те же продукты.
Возможность реакции с раствором слабой кислоты определяется как силой кислоты (чем сильнее кислота, тем она активнее), так и прочностью связи в оксиде (чем слабее связь, тем активнее оксид).
2) Оксиды щелочных и щелочноземельных металлов реагируют с водой (§ 11.4):
Li 2 O + H 2 O = 2Li + 2OH BaO + H 2 O = Ba 2 + 2OH
Li 2 O + H 2 O = 2LiOH p , BaO + H 2 O = Ba(OH) 2p .
3) Кроме того, основные оксиды реагируют с кислотными оксидами:
BaO + CO 2 = BaCO 3 ,
FeO + SO 3 = FeSO 4 ,
Na 2 O + N 2 O 5 = 2NaNO 3 .
В зависимости от химической активности тех и других оксидов реакции могут протекать при обычной температуре или при нагревании.
В чем причина протекания таких реакций? Рассмотрим реакцию образования BaCO 3 из BaO и CO 2 . Реакция протекает самопроизвольно, а энтропия в этой реакции уменьшается (из двух веществ, твердого и газообразного, образуется одно кристаллическое вещество), следовательно, реакция экзотермическая. В экзотермических реакциях энергия образующихся связей больше, чем энергия рвущихся, следовательно, энергия связей в BaCO 3 больше, чем в исходных BaO и CO 2 . И в исходных веществах, и в продуктах реакции два типа химической связи: ионная и ковалентная. Энергия ионной связи (энергия решетки) в BaO несколько больше, чем в BaCO 3 (размер карбонатного иона больше, чем оксид-иона), следовательно, энергия системы O 2 + CO 2 больше, чем энергия CO 3 2 .

+ Q

Иными словами, ион CO 3 2 более устойчив, чем отдельно взятые ион O 2 и молекула CO 2 . А большая устойчивость карбонат-иона (его меньшая внутренняя энергия) связана с распределением заряда этого иона (– 2 е ) по трем атомам кислорода карбонат-иона вместо одного в оксид-ионе (см. также § 13.11).
4) Многие основные оксиды могут быть восстановлены до металла более активным металлом или неметаллом-восстановителем:
MnO + Ca = Mn + CaO (при нагревании),
FeO + H 2 = Fe + H 2 O (при нагревании).
Возможность протекания таких реакций зависит не только от активности восстановителя, но и от прочности связей в исходном и образующемся оксиде.
Общим способом получения почти всех основных оксидов является окисление соответствующего металла кислородом. Таким способом не могут быть получены оксиды натрия, калия и некоторых других очень активных металлов (в этих условиях они образуют пероксиды и более сложные соединения), а также золота, серебра, платины и других очень малоактивных металлов (эти металлы не реагируют с кислородом). Основные оксиды могут быть получены термическим разложением соответствующих гидроксидов, а также некоторых солей (например, карбонатов). Так, оксид магния может быть получен всеми тремя способами:
2Mg + O 2 = 2MgO,
Mg(OH) 2 = MgO + H 2 O,
MgCO 3 = MgO + CO 2 .

1.Составьте уравнения реакций:
а) Li 2 O + CO 2 б) Na 2 O + N 2 O 5 в) CaO + SO 3
г) Ag 2 O + HNO 3 д) MnO + HCl е) MgO + H 2 SO 4
2.Составьте уравнения реакций, протекающих при осуществлении следующих превращений:
а) Mg MgO MgSO 4 б) Na 2 O Na 2 SO 3 NaCl
в) CoO Co CoCl 2 г) Fe Fe 3 O 4 FeO
3.Порцию никеля массой 8,85 г прокалили в токе кислорода до получения оксида никеля(II), затем обработали избытком соляной кислоты. К полученному раствору добавили раствор сульфида натрия до прекращения выделения осадка. Определите массу этого осадка.
Химические свойства основных оксидов.

13.5. Кислотные оксиды

Все кислотные оксиды - вещества с ковалентной связью.
К кислотным оксидам относятся:
а) оксиды элементов, образующих неметаллы,
б) некоторые оксиды элементов, образующих металлы, если металлы в этих оксидах находятся в высших степенях окисления, например, CrO 3 , Mn 2 O 7 .
Среди кислотных оксидов есть вещества, представляющие собой при комнатной температуре газы (например: СО 2 , N 2 O 3 , SO 2 , SeO 2), жидкости (например, Mn 2 O 7) и твердые вещества (например: B 2 O 3 , SiO 2 , N 2 O 5 , P 4 O 6 , P 4 O 10 , SO 3 , I 2 O 5 , CrO 3). Большинство кислотных оксидов - молекулярные вещества (исключения составляют B 2 O 3 , SiO 2 , твердый SO 3 , CrO 3 и некоторые другие; существуют и немолекулярные модификации P 2 O 5). Но и немолекулярные кислотные оксиды при переходе в газообразное состояние становятся молекулярными.
Для кислотных оксидов характерны следующие химические свойства .
1) Все кислотные оксиды реагируют с сильными основаниями, как с твердыми:
CO 2 + Ca(OH) 2 = CaCO 3 + H 2 O
SiO 2 + 2KOH = K 2 SiO 3 + H 2 O (при нагревании),
так и с растворами щелочей (§ 12.8):
SO 3 + 2OH = SO 4 2 + H 2 O, N 2 O 5 + 2OH = 2NO 3 + H 2 O,
SO 3 + 2NaOH р = Na 2 SO 4р + H 2 O, N 2 O 5 + 2KOH р = 2KNO 3р + H 2 O.
Причина протекания реакций с твердыми гидроксидами та же, что с оксидами (см. § 13.4).
Наиболее активные кислотные оксиды (SO 3 , CrO 3 , N 2 O 5 , Cl 2 O 7) могут реагировать и с нерастворимыми (слабыми) основаниями.
2) Кислотные оксиды реагируют с основными оксидами (§ 13.4):
CO 2 + CaO = CaCO 3
P 4 O 10 + 6FeO = 2Fe 3 (PO 4) 2 (при нагревании)
3) Многие кислотные оксиды реагируют с водой (§11.4).
N 2 O 3 + H 2 O = 2HNO 2 SO 2 + H 2 O = H 2 SO 3 (более правильная запись формулы сернистой кислоты -SO 2 . H 2 O
N 2 O 5 + H 2 O = 2HNO 3 SO 3 + H 2 O = H 2 SO 4
Многие кислотные оксиды могут быть получены путем окисления кислородом (сжигания в кислороде или на воздухе) соответствующих простых веществ (C гр, S 8 , P 4 , P кр, B, Se, но не N 2 и не галогены):
C + O 2 = CO 2 ,
S 8 + 8O 2 = 8SO 2 ,
или при разложении соответствующих кислот:
H 2 SO 4 = SO 3 + H 2 O (при сильном нагревании),
H 2 SiO 3 = SiO 2 + H 2 O (при высушивании на воздухе),
H 2 CO 3 = CO 2 + H 2 O (при комнатной температуре в растворе),
H 2 SO 3 = SO 2 + H 2 O (при комнатной температуре в растворе).
Неустойчивость угольной и сернистой кислот позволяет получать CO 2 и SO 2 при действии
сильных кислот на карбонаты Na 2 CO 3 + 2HCl p = 2NaCl p + CO 2 +H 2 O
(реакция протекает как в растворе, так и с твердым Na 2 CO 3), и сульфиты
K 2 SO 3тв + H 2 SO 4конц = K 2 SO 4 + SO 2 + H 2 O (если воды много, диоксид серы в виде газа не выделяется).

Похожие статьи

© 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.