Рентгеновское излучение для структурного анализа. Реферат: Рентгеноструктурный и рентгеноспектральный анализ

Рассмотрим еще один метод анализа твердых тел, также связанный с квантовым излучением, но лежащим в более коротковолновой части спектра. Рентгеноструктурный анализ (РСА) является методом исследования строения тел, использующим явление дифракции рентгеновских лучей. Этот метод предусматривает изучение структуры вещества на основании оценки пространственного распределения интенсивности рассеянного рентгеновского излучения.

Поскольку длина волны рентгеновского излучения сопоставима с размерами атома и постоянной решетки кристаллического тела, при облучении кристалла рентгеновским излучением будет наблюдаться дифракционная картина, которая зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны порядка единиц ангстрем.

Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т. д. Это основной метод определения структуры кристаллов. При их исследовании РСА дает наиболее достоверную информацию. При этом анализу могут быть подвергнуты не только регулярные монокристалличе- ские объекты, но и менее упорядоченные структуры, такие как жидкости, аморфные тела, жидкие кристаллы, поликристаллы и др.

На основе многочисленных уже расшифрованных атомных структур решается и обратная задача: по рентгенограмме поликристаллического вещества, например, легированной стали, сплава, руды, лунного грунта, устанавливается кристаллическое строение этого вещества, т. е. выполняется фазовый анализ.

В ходе РСА исследуемый образец помещают на пуги рентгеновских лучей и регистрируют дифракционную картину, возникающую в результате взаимодействия лучей с веществом. На следующем этапе анализируют

Рис. 15.35.

дифракционную картину и расчетным путем устанавливают взаимное расположение частиц в пространстве, вызвавшее появление данной картины. На рисунке 15.35 приведена фотография аналитической установки, реализующей способ РСА.

Рентгеноструктурный анализ кристаллических веществ выполняется в два этапа. Первый - это определение размеров элементарной ячейки кристалла, числа частиц (атомов, молекул) в элементарной ячейке и симметрии расположения частиц (так называемой пространственной группы). Эти данные получают путем анализа геометрии расположения дифракционных максимумов.

Второй этап - расчет электронной плотности внутри элементарной ячейки и определение координат атомов, которые отождествляются с положением максимумов электронной плотности. Такие данные получают, измеряя интенсивности дифракционных максимумов.

Существуют различные экспериментальные методы получения и регистрации дифракционной картины. При любом методе имеется источник рентгеновского излучения, система для выделения узкого пучка рентгеновских лучей, устройство для закрепления и ориентирования образца относительно оси пучка и приемник рассеянного образцом излучения. Приемником служит фотопленка, или ионизационные либо сцинтилляци- онные счетчики рентгеновских квантов, или другое устройство фиксации информации. Метод регистрации с помощью счетчиков (дифрактомегри- ческий) обеспечивает наиболее высокую точность определения интенсивности регистрируемого излучения.

Основными методами рентгеновской съемки кристаллов являются:

  • метод Лауэ;
  • метод порошка (метод дебаеграмм);
  • метод вращения и его разновидность - метод качания.

При съемке методом Лауэ на монокристаллический образец падает пучок немонохроматического излучения (рис. 15.36, а). Дифрагируют лишь те лучи, длины волн которых удовлетворяют условию Вульфа-Брэгга. Они образуют дифракционные пятна на лауэграмме (рис. 15.36, б), которые располагаются по эллипсам, гиперболам и прямым, обязательно проходящим через пятно от первичного пучка. Важное свойство лауэграммы состоит в том, что при соответствующей ориентировке кристалла симметрия расположения этих кривых отражает симметрию кристалла.


Рис. 15.36. Рентгеновская съемка по методу Лауэ: а - схема облучения: б - типичная лауэграмма; / - пучок рентгеновских лучей; 2 - коллиматор; 3 - образец; 4 - дифрагированные лучи; 5 - плоская фотопленка

По характеру пятен на лауэграммах можно выявить внутренние напряжения и другие дефекты кристаллической структуры. Индицирование же отдельных пятен затруднительно. Поэтому метод Лауэ применяют исключительно для нахождения нужной ориентировки кристалла и определения его элементов симметрии. Этим методом проверяют качество монокристаллов при выборе образца для более полного структурного исследования.

При использовании метода порошка (рис. 15.37, а ), так же как и в описываемых далее методах рентгеновской съемки, применяется монохроматическое излучение. Переменным параметром является угол падения 0, так как в поликристаллическом порошковом образце всегда присутствуют кристаллики любой ориентации по отношению к направлению первичного пучка.


Рис. 15.37. Рентгеновская съемка методом порошка: а - схема метода; б - типичные порошковые рентгенограммы (дебаеграммы); 1 - первичный пучок; 2- порошковый или поликристаллический образец; 3 - дифракционные конусы

Лучи от всех кристалликов, у которых плоскости с некоторым межплоскостным расстоянием d hkj находятся в «отражающем положении», т. е. удовлетворяют условию Вульфа-Брэгга, образуют вокруг первичного луча конус с углом растра 40°.

Каждому dukt соответствует свой дифракционный конус. Пересечение каждого конуса дифрагированных рентгеновских лучей с полоской фотопленки, свернутой в виде цилиндра, ось которого проходит через образец, приводит к появлению на ней следов, имеющих вид дужек, расположенных симметрично относительно первичного пучка (рис. 15.37, б). Зная расстояния между симметричными «дугами», можно вычислить соответствующие им межплоскостные расстояния d в кристалле.

В современных приборах вместо свернутой по цилиндрической поверхности фотопленки используют датчик с малой апертурой и площадью приемного окна, который дискретно перемещают по цилиндрической поверхности, снимая дифрактограмму.

Метод порошка наиболее прост и удобен с точки зрения техники эксперимента, однако единственная поставляемая им информация - выбор межплоскостных расстояний - позволяет расшифровывать только самые простые структуры.

В методе вращения переменным параметром является угол 0. Съемка производится на цилиндрическую фотопленку. В течение всего времени экспозиции кристалл равномерно вращается вокруг оси, совпадающей с каким-либо важным кристаллографическим направлением и осью образуемого пленкой цилиндра. Дифракционные лучи идут по образующим конусов, которые при пересечении с пленкой дают линии, состоящие из пятен (слоевыелинии).

Метод вращения дает больше информации, чем метод порошка. По расстояниям между слоевыми линиями можно рассчитать период решетки в направлении оси вращения кристалла.

В этом методе упрощается идентификация пятен рентгенограммы. Так, если кристалл вращается вокруг оси решетки, то все пятна на линии, проходящей через след первичного луча, имеют индексы (А, к , О), на соседних с ней слоевых линиях - соответственно (А, к, I) и (А, А, I) и т. д. Однако и метод вращения не предоставляет всей возможной информации, поскольку неизвестно, при каком угле поворота кристалла вокруг оси вращения образовалось то или иное дифракционное пятно.

При исследовании методом качания, который является разновидностью метода вращения, образец не совершает полного вращения, а «качается» вокруг той же оси в небольшом угловом интервале. Эго облегчает индицирование пятен, так как позволяет получать рентгенограмму вращения по частям и определять с точностью до величины интервала качания, под каким углом поворота кристалла к первичному пучку возникло каждое дифракционное пятно.

Еще более полную информацию дают методы рентгеногониометра. Рентгеновский гониометр - это прибор, с помощью которого одновременно регистрируют направление дифрагированных на исследуемом образце рентгеновских лучей и положение образца в момент возникновения дифракции.

Один из таких методов - метод Вайссенберга - является дальнейшим развитием метода вращения. В отличие от последнего в рентгеногониоме- тре Вайссенберга все дифракционные конусы, кроме одного, закрываются цилиндрической ширмой, а пятна оставшегося дифракционного конуса «разворачиваются» на всю площадь фотопленки путем ее возвратно-поступательного осевого перемещения синхронно с вращением кристалла. Это позволяет определить, при какой ориентации кристалла возникло каждое пятно вайссенбергограммы.

Существуют и другие методы съемки, в которых применяется одновременное синхронное движение образца и фотопленки. Важнейшими из них являются метод фотографирования обратной решетки и прецессионный метод Бюргера. При этом используется фотографическая регистрация дифракционной картины. В рентгеновском дифрактометре можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счетчиков рентгеновских квантов.

Рентгеноструктурный анализ дает возможность устанавливать структуру кристаллических веществ, в том числе таких сложных, как биологические объекты, координационные соединения и т. д. Полное структурное исследование кристалла часто позволяет решать и чисто химические задачи, например, установление или уточнение химической формулы, типа связи, молекулярной массы при известной плотности или плотности при известной молекулярной массе, симметрии и конфигурации молекул и молекулярных ионов.

Применяется РСА и для изучения кристаллического состояния полимеров, аморфных и жидких тел. Рентгенограммы таких образцов содержат несколько размытых дифракционных колец, интенсивность которых резко снижается с увеличением угла падения 0. По ширине, форме и интенсивности этих колец делают заключение об особенностях ближнего порядка в жидкой или аморфной структуре.

Важной областью применения рентгеновских лучей является рентгенография металлов и сплавов, которая стала отдельной отраслью науки. Рентгенография включает наряду с полным или частичным РСА также и другие приемы использования рентгеновских лучей: рентгеновскую дефектоскопию (просвечивание), рентгеноспектральный анализ, рентгеновскую микроскопию и др.

Определение структуры чистых металлов и многих сплавов, основанное на РСА (кристаллохимия сплавов) - один из ведущих разделов металловедения. Ни одна диаграмма состояния металлических сплавов не может считаться надежно установленной, если данные сплавы не исследованы методами РСА. Благодаря РСА оказалось возможным глубокое изучение структурных изменений, протекающих в металлах и сплавах при их пластической и термической обработке.

Методу РСА свойственны и ограничения. Для проведения полного РСА необходимо, чтобы вещество хорошо кристаллизовалось с образованием устойчивых кристаллов. Иногда необходимо проводить исследования при высоких или низких температурах. Это сильно затрудняет проведение эксперимента.

Полное исследование очень трудоемко, длительно и сопряжено с большим объемом вычислительной работы. Для установления атомной структуры средней сложности (-50-100 атомов в элементарной ячейке) необходимо измерять интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту кропотливую работу выполняют автоматические микроденситометры и дифрактометры, управляемые ПК, - иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч).

В связи с этим для решения задач РСА были разработаны и получили широкое распространение специализированные пакеты прикладных программ, позволяющие автоматизировать процесс измерений и интрепрета- ции их результатов. Однако даже с привлечением вычислительной техники определение структуры остается сложным.

Применение в дифрактометре нескольких счетчиков, которые параллельно регистрируют отражения, позволяет сократить время эксперимента. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности, позволяя определять структуру молекул и общий характер взаимодействия молекул в кристалле.

Исследование методом РСА не всегда дает возможность с нужной степенью достоверности судить о различиях в характере химических связей внутри молекулы, так как точность определения длин связей и валентных углов часто оказывается недостаточной. Серьезным ограничением метода является также трудность определения положений легких атомов, и особенно атомов водорода.

1895 год оказался исключительно важным сперва для науки, а вскоре и для всего мира - именно тогда впервые открыли рентгеновские лучи, без которых сегодня нашу жизнь представить очень сложно. Слово страшное, все его боятся: это изучение, которое убивает! А после катастроф на АЭС и вовсе кровь в жилах стынет. Впрочем, про трагедии наслышаны все, а вот о пользе, которую это открытие дало людям, знают немногие. И речь идет не только лишь о специальных снимках - едва ли единственном эффективном методе выявления многих патологий. Еще одна область применения лучей - рентгеноструктурный анализ металлов, белков, иных соединений.

О чем идет речь

Рентгеновские лучи - электромагнитные колебания. Отличительная особенность - маленькая длина, сопоставимая с атомными габаритами. Источник излучения - быстрые электроны, влияющие на атомную структуру. В настоящее время излучение нашло себе применение в научно-техническом секторе.

Особенности лучей выявили в 1912 в ходе испытаний, проводимых немецкими учеными Книппингом, Фридрихом, Лауэ. При обследовании атомной решетки был установлен факт дифракции. Если сформировать узкий лучевой пучок и направить его на кристалл, обеспечив ему неподвижность, можно получить фракционную картинку на фотографической пластинке, размещенной позади кристалла. Отражение, полученное таким образом, представляло собой упорядоченную систему пятен, каждое из которых было следом определённого луча, рассеявшегося под влиянием кристалла. Изображение было решено назвать лауэграммой. Она легла в основу рентгеноструктурного анализа кристаллов, развивающегося и совершенствующегося в современности.

Тайны vs. наука

Применённый в биологии рентгеноструктурный анализ позволил проникнуть в тайную суть жизни. Впрочем, стоит отметить, что фундаментом для всего выступила квантовая физика - именно она дает обоснование явлениям, которые мы сейчас познаем с помощью рентгеновских лучей. Известно, что окружающее пространство, тела, предметы сформированы молекулами, атомами, сложенными в разные систематизированные, упорядоченные структуры. Выявление особенностей конкретного вещества может быть проведено только экспериментальным путем. В наши дни применение рентгеноструктурного анализа - эффективный, точный, современный способ определения атомного строения.

Для получения полезной информации необходимо использовать экспериментальные установки, где «работать» заставляют волны, чья длина - десять в минус десятой степени (!) метра. Именно таков масштаб расстояний на атомарном уровне. Для обывателя, далекого от физики, даже представить себе столь крошечные величины не представляется возможным - но ученые не просто смогли их разглядеть, но и проанализировали, заставили работать и производить еще больше информации, необходимой человечеству для познания окружающего мира и законов его построения.

Структуры и методики

Эксперименты 1912 года позволили сформулировать основные принципы рентгеноструктурного анализа, так как ученые получили эффективный метод выявления положения молекул, атомов внутри кристалла. Со временем также удалось собрать информацию о внутреннем строении молекул. Новые сведения быстро привлекли внимание самых светлых умов того времени, и за работу над еще только развивающимся рентгеноструктурным анализом взялись два британских ученых, отец и сын Брэгги. Именно они создали метод, благодаря которому человечество получило возможность очень точно определять молекулярную, минеральную структуру.

Со временем в фокусе внимания ученых оказывались все более сложные объекты, но рентгеноструктурный анализ показал себя на удивление универсальным. Постепенно очередь дошла до живых молекул. Сложно вообразить, насколько значим в настоящее время метод рентгеноструктурного анализа в биологии. Практически сразу ученые столкнулись со многочисленными сложностями, и в первую очередь - проблемой выделения кристаллов. Одна молекула - это несколько десятков тысяч атомов, что давало на снимке столь запутанное изображение, что восстановление координат не представлялось возможным. Но это только поначалу: годы шли, метод совершенствовался, в настоящее время эта задача уже решена.

Рентгеноструктурный анализ белков

Наиболее значимые исследования, связанные с этой тематикой, были организованы в Кавендишской лаборатории. Руководил ими уже упомянутый выше британец Брэгг. В качестве технического задания сформулировали задачу выявления белкового пространственного строения. Такая цель была закономерной: в середине прошлого столетия бытовало мнение, что самая важная для живого мира молекула - это белок. Для объяснения идеи аргументом был факт химических реакций, провоцируемых в клетке - ферментами, стимулирующими их, бывают только белки. Из этого ученые сделали закономерный вывод, что белок представляет собой основной строительный материал живой клетки, и освоение всех особенностей его структуры дало бы ответ на любые вопросы, связанные с фактом жизни. А изучить строение должен был помочь метод рентгеноструктурного анализа.

Итак, в центре внимания оказался сложный полимер - белок, звенья которого - мономеры, остатки аминокислот. Исследования показали, что таковые всегда линейны, а структура постоянна при повышении температур даже до того уровня, когда биологическая активность полностью угнетается. На основании полученных сведений стало ясно, что только остатки аминокислот в правильной последовательности еще не могут обеспечить возможность жизни, нужна также правильная компоновка групп в пространстве.

Успех не за горами

Примененный в лабораторных условиях рентгеноструктурный анализ помог решить поставленную перед учеными задачу. Успех пришел в середине пятидесятых, а первооткрывателями стали Перуц, Кендрю. Благодаря им в настоящее время мир знает, что белок имеет трехмерную структуру. Не менее важна и прочая информация, полученная разными учеными в ходе исследований и испытаний в попытке достичь поставленной цели. Многие данные, полученные в то время, в будущем помогли избежать ошибок и сделать более простым рентгеноструктурный анализ клетки.

В настоящее время посредством разработанной технологии можно изучить атом любого вещества и определить все специфические особенности элементарной ячейки, включая расположение в пространстве, форму, габариты. Рентгеноструктурный анализ позволяет выявить кристаллическую группу симметрии. В наши дни этот способ определения структуры вещества распространён шире любых других, что обусловлено его относительно низкой стоимостью, простотой реализации.

Рентгеновские спектры

Это понятие - одно из ключевых для теории рентгеноструктурного анализа. Принято говорить о двух типах: характеристическом, тормозном излучении. Тормозное обусловлено соответствующим движением электронов. Спровоцировать в лабораторных условиях это явление можно, если активировать антикатод установки. Ученый получает доступ к ограниченному широкому спектру. Каким образом будет расположена граница, от вещества не зависит, это полностью обусловлено энергетическими запасами направленных электронов. Тормозной спектр становится интенсивнее, если направленные частицы легче, а возбуждение электронов позволяет добиться очень высоких величин.

Используемое в методе рентгеноструктурного анализа характеристическое излучение сопровождается перемещением электронов. Расположенная на внутреннем атомном слое частица выбивается, с внешнего слоя заряженная частица переходит внутрь, весь процесс сопровождается определённой характеристикой - специфическим спектром, который во многом сходен с присущими газообразным веществам. Принципиальное отличие этих спектров - в зависимости (или ее отсутствии в случае рентгеновского изучения) от элемента, провоцирующего образование явления.

Рентген, результат и объект

Как показали испытания, проведенные с использованием различных соединений, рентгеноструктурный анализ в некоторой степени определяется его особенностью, отраженной через порядковый номер менделеевской таблицы: чем это значение больше, тем сильнее смещение к коротковолновому спектру. В 1913 было доказано: извлеченный из значения частоты квадратный корень линейно привязан к атомарному номеру. В будущем эта закономерность использовалась для обоснования менделеевской таблицы.

Следует учитывать, что разные элементы обладают разным спектром. При этом не наблюдается зависимости от возбуждаемости для испускания рентгеновского свечения в свободной форме, соединении с другими химическими элементами. На основании данных стало возможным проводить рентгеноструктурный анализ применительно к сложноструктурированных объектам. Выявленные спецификации стали базовыми для определения специфичности аналитического метода, сегодня обширно применяются.

Рентгеноструктурный анализ: теория и практика

В настоящее время эту методику анализа классифицируют как химический раздел, применимый для анализа вещественного состава. Интенсивность излучения определяется числом атомов, задействованных в процессе. Возбуждение провоцируется электронной бомбардировкой, облучением. В первом случае говорят о прямом возбуждении, при воздействии рентгеновских лучей - флуоресцентном (вторичном). Квант первичной радиации должен иметь энергетические запасы, превышающие расходы на выбивание электрона с занимаемой им позиции. Бомбардировка становится причиной специфического спектра и излучения - непрерывного, с высокой интенсивностью. Если предполагается вторичное возбуждение, тогда результат содержит линейчатый спектр.

Первичная возбуждаемость сопровождается нагревом субстанции. Флуоресцентное не провоцирует такого эффекта. При первичном методе веществом наполняют трубку, где создается высокий вакуум, а для флуоресцентной методологии необходимо расположить объект на пути рентгеновского излучения. Условие вакуума здесь не играет роли. Это довольно удобно: исследовав один объект, можно убрать образец и поместить следующий, процедура простая и практически не требует времени. В то же время вторичное излучение по интенсивности в тысячи раз слабее в сравнении с первичным методом. Тем не менее метод рентгеноструктурного анализа клетки обычно производится с применением именно вторичного, флуоресцентного излучения, предполагающего наличие быстрых электронов.

Что используется?

Для проведения анализа необходимо иметь в своем распоряжении специальный прибор. Полнопрофильный рентгеноструктурный анализ реализуется при помощи дифрактометра. Существует также флуоресцентный спектрометр. Этот прибор сформирован тремя ключевыми узлами: трубкой, анализатором, детектором. Первая является источником излучения, влияющего на флуоресцентный спектр исследуемого материала. Анализатор необходим, чтобы получить спектр. Детектор передает информацию об интенсивности, следующий шаг - фиксация результатов эксперимента.

На практике довольно часто используется такой спектрометр: излучающий источник, детектор расположены на специализированной окружности, центральное место принадлежит способному вращаться вокруг собственной оси кристаллу. Фактически ось пронизывает центр окружности.

Фокусирующий спектрометр

Как можно заключить из доступной для широкого круга лиц информации, в настоящее время методы, программы полнопрофильного рентгеноструктурного анализа труднодоступны, поэтому реальное широкое применение на практике не получили. Отмечается, что гораздо более актуальный вариант - это метод отражения, изобретённый Иоганном, Иогансоном и Капицей. Предполагается применение специализированного спектрометра. Альтернативный вариант - технология, авторами которой выступаю Коуш, Дю-Монд. Этот вариант именуется «на прохождение».

Указанные широко используемые в настоящее время методики бывают с одним либо многочисленными каналами. Многоканальные квантометры, аутрометры - это эффективный метод выявления многочисленных элементов. Сама работа, связанная с анализом, при применении такой технологии автоматизируется до высокого уровня. Преимущественно приборы оснащены трубками, устройствами, благодаря которым становится достижима повышенная стабилизационная степень интенсивности изучения. Спектрометр использует волны из диапазона, определённого анализатором. Для его плоскостей характерно некоторое конкретное расстояние, и невозможно отражение таких лучей, длина которых вдвое или больше, нежели межплоскостное анализатора.

Особенности реализации

В настоящее время используются самые разные элементы в качестве кристаллов. Наибольшее распространение получили слюда, гипс, кварц. Детекторами выступают гейгеровские счетчики, а также специализированные кристаллические, пропорциональные. В последнее время все активнее используются так называемые квантовые сцинтилляционные счётчики.

Из объектов, которые исследуются разными приборами, довольно часто внимание научных сотрудников привлекают ферриты висмута. Полнопрофильный рентгеноструктурный анализ BiFeO3 уже не раз становился главной темой научных работ в области химии, предполагается, что некоторые аспекты еще только предстоит открыть.

Область применения

Рентгеноспектральный анализ позволяет определять, как много в некотором соединении содержится целевого элемента, вызывающего интерес исследователя. Допускается исследовать сложные составы, сплавы, металлы. Нередко таким образом анализируют керамические, цементные соединения, пластмассовые. Можно исследовать даже пыль либо абразивные компоненты. Химтехнологии дают доступ к широкому спектру разнообразных продуктов, изучить особенности которых можно, прибегнув к рентгеновскому излучению. Самые актуальные области применения анализа - геология, металлургия, где аппаратура используется с целью выявления микроскопических, макроскопических компонентов.

Нет предела совершенству

Не всегда стандартная установка для рентгеноспектрального анализа позволяет получить необходимые сведения относительно исследуемого объекта. Для увеличения показателей чувствительности применимой методики допускается комбинирование нескольких вариантов подходов: радиометрия прекрасно сочетается с химическими способами. Наибольшая чувствительность определяется атомным номером вещества, которое предстоит выявить, а также средним номером образца. Если речь идет о легких элементах, задача считается довольно простой. Точность - 2-5 % (относительных), вес - считанные грамы, длительность - до двух часов, но иногда необходимо всего лишь несколько минут. А вот сложной считается задача, если речь идет о мягком спектре, небольшом Z.

Анализ белков: особенности

Одно из очень важных направлений использования описываемой методики - анализ белков. Как выше было указано, для получения точной информации об исследуемом объекте его необходимо изучать в виде кристалла, но в нормальном состоянии белковая молекула не имеет такой формы. Для проведения анализа необходимо преобразование.

Как это происходит?

Почти любое исследование белка в рамках эксперимента предполагает биохимическую методику добычи исходного вещества. Биологический материал измельчают, переводят белок в растворенное состояние и из общей смеси выделяют необходимый объект, который и будут дальше исследовать. Во многом результативность мероприятия зависит от качества выделения белка.

Чтобы можно был прибегнуть к анализу с использованием рентгеновского излучения, необходимо сформировать кристаллы. Если соединение сложное, рабочий процесс затягивается надолго. Как правило, в качестве исходного состава применяют насыщенный раствор, который затем обрабатывают, и жидкость испаряется. Второй вариант предполагает температурное влияние. Получаемые в итоге компоненты можно исследовать в специальной установке.

15.1 Физические особенности рентгеноструктурного анализа

Рентгеноструктурный анализ основан на явлении дифракции рентгеновских лучей, возникающих при рассеянии рентгеновских лучей кристаллическими веществами. Изучают расположение атомов в кристаллических материалах и процессы, связанные с перестройкой атомов в кристаллах. С помощью рентгеноструктурного анализа изучаются диаграммы состояния сплавов, определяются внутренние напряжения, размеры и ориентация кристаллитов, распад пересыщенных твёрдых растворов и решаются многие другие практически важные задачи.

Рентгеноструктурный анализ широко используется при изучении структурных несовершенств в кристаллах, присутствие которых определяет многие свойства материалов. Рентгеновская дифракция позволяет изучать мозаичную структуру кристаллов, выявлять дислокации, определять размеры субструктурных составляющих, их разориентировку, тип субзёренных границ.

Рентгеноструктурные методы изучения кристаллической структуры твёрдых тел сыграли большую роль в развитии материаловедения. Метод рентгенографии позволил определять атомно-кристаллическую структуру твёрдых тел и изучать стабильные и метастабильные состояния металлов и сплавов, а также явления, происходящие при их термической и механической обработке, и, таким образом, понять механизм структурных процессов.

Большое количество работ проведено, с целью установить связь между атомно-кристаллической структурой и свойствами материалов. В результате данные атомно-кристаллической структуры сделались необходимой характеристикой материалов. Структурные характеристики, рассчитанные по данным рентгеноструктурного анализа, широко используют при разработке режимов обработки металлов и для контроля технологических процессов.

Методики рентгеноструктурного анализа разнообразны, что позволяет получать богатую информацию о различных деталях строения материалов и его изменениях при различных методах обработке.

Рентгеновское излучение образуется при бомбардировке вещества быстро движущимися электронами. В дифракционных методах используются рентгеновские лучи с длиной волны порядка 10 -10 м = 10 -8 см = 0,1 нм, что примерно равно величине межатомных расстояний в кристаллическом веществе.

Для рентгеновской дифракции используется разность потенциалов до 50 кВ. в момент достижения электроном анода энергия электронов будет равна eU, где e - заряд электрона, U - разность потенциалов, приложенная к электродам.

При торможении электронов в мишени - зеркало анода, электрон потеряет энергию Е 1 – Е 2 , где е и Е 2 - энергии электрона до и после столкновения. Если торможение произошло достаточно быстро, то эта потеря энергии превратится в излучение в соответствии с законом:



hν = E 1 – E 2 , (15.1)

где h - постоянная Планка; ν - частота испускаемого рентгеновского излучения.

Если электрон теряет всю свою энергию при одном столкновении, то
максимальная частота возникшего излучения определяется уравнением:
hν max = eU. (15.2)

Поскольку , где с - скорость света, λ- длина волны излучения, то отсюда вытекает, что минимальное значение длины волны будет равно:

При U = 50 кВ длина λ min примерно равна 0,025нм. В большинстве случаев на своём пути электрон сталкивается с несколькими атомами, теряя при каждом соударении часть энергии, и таким образом порождая несколько фотонов, причём каждому из них соответствует волна, длина которой превышает λ min .

Таким образом, образуется белое излучение - сплошной (непрерывный) спектр, который имеет резкую границу в коротковолновой части и лишь постепенно уменьшается в сторону более длинных волн. Рисунок 15.1.

Фактически в рентгеновское излучение преобразуется менее 1 % кинетической энергии электронов. Эффективность этого превращения зависит от вещества зеркала анода и возрастает с увеличением атомного номера Z, составляющих его атомов. Комбинируя этот эффект с тем, который получается при увеличении напряжения U, можно установить, что суммарная интенсивность рентгеновского излучения примерно пропорциональна ZU 2 .

Для трубок с вольфрамовым анодом при U = 20 кВ η = 0,12%, при U = 50 кВ η = 0,27% . Чрезвычайно малые η возбуждения непрерывного спектра при относительно низком напряжении объясняются тем, что большая часть электронов (≈99%) постепенно растрачивает свою энергию при взаимодействии с атомами вещества анода на их ионизацию и повышение температуры анода.



При определённом ускоряющем напряжении возникает рентгеновское характеристическое излучение. Рисунок 15.2.

Рисунок 15.1. Непрерывный спектр, полученный от

вольфрамовой мишени

Рисунок 15.2. К-спектры Мо и Сu при 35 кВ,

α-линия представляет собой дуплет.

Интенсивность этих линий может в сотни раз превышать интенсивность всякой другой линии непрерывного спектра в том же интервале длин волн. Характеристическое излучение возникает, когда падающий электрон обладает достаточно большой энергией для того, чтобы выбить электрон с одной из внутренних электронных оболочек атома зеркала анода, и получившееся вакантное место занимает электрон с более высокого энергетического уровня, избыток энергии реализуется в виде излучения. Длина испускаемой волны определяется разностью энергий этих двух уровней, и, таким образом, повышение напряжения хотя и способствует увеличению интенсивности, но не изменяет длину волны характеристического излучения анода.

Спектры характеристических волн достаточно просты и классифицируются в порядке возрастания длин волн К, L, М - серии в соответствии с уровнем, с которого был выбит электрон. Линии К-серии получаются, если электрон выбит с наиболее глубокого К-уровня, и образовавшаяся таким образом вакансия заполняется электроном с более высокого уровня, например L или М. Если электрон выбит со следующего по глубине уровня L и замещён электроном с уровня М или N, возникают линии L-серии. Рисунок 15.3.

Рисунок 15.3. Переходы между энергетическими

уровнями, формирующие рентгеновские спектры

Каждая серия возникает только тогда, когда ускоряющее напряжение превышает определенное критическое значение U 0 , которое называется потенциалом возбуждения.

Значение потенциала возбуждения U 0 связано с самой меньшей длиной волны данной серии λ min:

Потенциалы возбуждения серий располагаются в следующем порядке: U N < U M < U L < U K . Например, для вольфрама U N = 2,81 кВ; U L = 12,1 кВ и U K = 69,3 кВ. Потенциал возбуждения данной серии растёт с увеличением атомного номера материала анода. Спектры характеристического излучения различных элементов одинаковы по своему строению.

В практике рентгеноструктурного анализа наиболее часто используется К-серия, которая состоит из четырёх линий: α 1 , α 2 , β 1, β 2 . Длины волн этих линий располагаются в последовательности λ α 1 > λ α > λ β 1 > λ β . Отношение интенсивностей этих линий для всех элементов примерно одинаково и приблизительно равно I α 1: I α 2: I β 1: I β 2 .

С увеличением атомного номера элемента спектры характеристического излучения смещаются в сторону коротких длин волн (Закон Мозли).

где σ - постоянная экранирования; ; n и m - целые числа для К-серии n = 1, для L-серии n = 2.

15.2 Источники рентгеновского характеристического излучения

Рентгеновская трубка является источником рентгеновских лучей, возникающих в ней в результате взаимодействия быстро летящих электронов с

атомами анода, установленного на пути электронов.

Для возбуждения рентгеновского излучения в рентгеновских трубках должно быть обеспечено: получение свободных электронов; сообщение свободным электронам большой кинетической энергии, от
нескольких тысяч до 1-2 миллионов электрон-вольт; взаимодействие быстро летящих электронов с атомами анода.

Рентгеновские трубки классифицируют по определённым признакам. По способу получения свободных электронов. При этом различают трубки ионные и электронные. В ионных трубках свободные электроны создаются в результате бомбардировки холодного катода положительными ионами, возникающими в разреженном до 10 -3 – 10 -4 мм рт.ст. в газе при приложении к ним высокого напряжения. В электронных трубках свободные электроны образуются вследствие термоэлектронной эмиссии катода, накаливаемого током.

По способу создания и поддержания вакуума. Используются трубки запаянные и разборные. В запаянных трубках высокий вакуум создаётся при изготовлении и сохраняется в течение всего периода эксплуатации. Нарушение вакуума вызывает выход трубки из строя. В разборных трубках вакуум создаётся и поддерживается вакуумным насосом в процессе эксплуатации.

По назначению трубки применяют для просвечивания материалов -рентгеновская дефектоскопия. Для структурного анализа – метод рентгеновской дифракции. Для медицинских целей - диагностические и терапевтические.

Основным типом трубок, применяемых в рентгеноструктурном анализе, являются запаянные электронные трубки. Рисунок 15.4.

Представляют собой стеклянный баллон, в который введены два электрода - катод в виде накаливаемой проволочной вольфрамовой спирали и анод в виде массивной медной трубки. В баллоне создаётся высокий вакуум 10 -5 – 10 -7 мм рт.ст., обеспечивающий свободное движение электронов от катода к аноду, тепловую и химическую изоляцию катода, и предотвращающий возникновение газового разряда между электродами.

Когда вольфрамовая спираль, разогретая током накала до 2100 - 2200°С, испускает электроны, то они, находясь в поле приложенного к полюсам трубки высокого напряжения, устремляются с большой скоростью к аноду. Ударяясь о площадку в торце анода (зеркало анода), электроны резко тормозятся. Примерно 1 % их кинетической энергии при этом превращается в энергию электромагнитных колебаний - рентгеновское характеристическое излучение, остальная энергия трансформируется в тепло, выделяющееся на аноде.

Рисунок 15.4. Схема запаянной электронной

рентгеновской трубки БСВ-2 для структурного

анализа: 1- катод; 2 - анод; 3 - окна для выпуска

рентгеновских лучей; 4 - защитный цилиндр;

5 - фокусирующий колпачок

Относительно мягкие лучи, испускаемые обычно трубками для структурного анализа с длиной волн 0,1 нм и больше, очень сильно поглощаются стеклом. Поэтому для выпуска рентгеновских лучей в баллоны этих трубок впаивают специальные окна, изготовленные либо из сплава гетан, содержащего легкие элементы (бериллий, литий, бор), либо из металлического бериллия.

Фокусом трубки называют площадку на аноде, на которую падают электроны и от которой излучаются рентгеновские лучи. Современные рентгеновские трубки имеют круглый или линейчатый фокус. Соответственно катод выполняют либо в виде спирали, помещённый внутри фокусирующей чашки, либо в виде винтовой линии, находящейся внутри полуцилиндра.

Анод рентгеновской трубки для структурного анализа представляет собой полый массивный цилиндр, изготовленный из материала с высокой теплопроводностью, чаще всего из меди. В торцовую стенку анода впрессовывают пластинку - антикатод (зеркало анода), который тормозит электроны, эмитированные с катода. В трубках для структурного анализа зеркало анода изготавливают из того металла, характеристическое излучение которого используют для получения дифракционной картины при решении конкретных задач рентгеноструктурного анализа.

Наиболее распространены трубки с анодами из хрома, железа, ванадия, кобальта, никеля, меди, молибдена, вольфрама, применяют трубки с серебряным и марганцевым анодами. Торец анода в трубках для структурного анализа срезан под углом 90° к оси анода.

Важнейшей характеристикой трубки является предельная мощность:

P = U·I Вт (15.6)

где U - значение высокого напряжения, В; I - ток трубки, А.

В некоторых задачах рентгеноструктурного анализа, особенно требующих получения рентгенограмм с высоким разрешением, эффективность съёмки зависит от размеров фокуса и, значит, определяется удельной мощностью трубки - мощностью, испускаемой единицей площади антикатода. Для таких условий предназначены острофокусные трубки, например, БСВ-7, БСВ-8, БСВ-9 и микрофокусная трубка БСВ-5.

15.3 Методы регистрации характеристического

рентгеновского излучения

Для регистрации рентгеновских лучей применяют ионизационный, фотографический, электрофотографический и люминесцентный методы.

Ионизационный метод позволяет с большой точностью измерять интенсивность рентгеновских лучей на сравнительно небольшой площади, ограничиваемой измерительными щелями. Метод широко применяется в рентгеноструктурном анализе, когда необходимо знание точного соотношения интенсивностей и профиля дифракционных максимумов.

Фотографический метод регистрации дифракционных максимумов получил широкое распространение. Обладает документальностью и высокой чувствительностью. К недостаткам метода относится необходимость использовать фотографический материал, что усложняет регистрацию рентгеновского излучения.

Электрофотографический метод (ксерорадиография) - сравнительно простой метод, преимущество которого заключается в возможности последовательно получать на одну пластинку большое число снимков.

Метод наблюдения изображения на светящемся экране обладает большой производительностью, не требует затрат на фотоматериалы. Одним из недостатков метода является малая чувствительность при выявлении дефектов, (тсутствие документальности.

Ионизационный метод.

Рентгеновские лучи, проходя через газ, ионизуют его молекулы. В результате образуется одинаковое число ионов различного знака. При наличии электрического поля возникающие ионы начинают двигаться к соответствующим электродам. Ионы, достигшие электродов, нейтрализуются, и во внешней цепи появится ток, который регистрируется. Рисунок 15.5.

Рисунок 15.5. Зависимость ионизационного тока i

от напряжения на электродах U: I - область насыщения;

II - область полной пропорциональности; III – область

неполной пропорциональности; IV - область равных импульсов

Дальнейшее увеличение напряжения до U = U 2 не вызывает увеличения ионизационного тока, возрастает лишь скорость ионов. При U ≥ U 2 скорость ионов становится достаточной для ионизации молекул газа через столкновение - ударная ионизация и ток начинает возрастать с увеличением напряжения за счёт газового усиления. Коэффициент газового усиления до U ≤ U 3 линейно зависит от приложенного напряжения - область полной пропорциональности, и может достигать 10 2 – 10 4 .

При U ≥ U 3 наблюдается нарушение линейности газового усиления -область неполной пропорциональности. При U ≥ U 4 в случае прохождения между электродами фотона с энергией, достаточной для образования хотя бы одной пары ионов, возникает лавинный разряд - область равных импульсов, при котором прохождению ионизирующих частиц различной энергии отвечает возникновение одинаковых импульсов тока. Дальнейшее повышение напряжения приводит к возникновению самостоятельного разряда.

Ионизирующее действие рентгеновских лучей используют для их регистрации. Применяют приборы, работающие в различных областях газового разряда:

Ионизационные камеры - в области насыщения;

Пропорциональные счётчики - в режиме полной пропорциональности;

Газоразрядные счётчики - в области равных импульсов.

Ионизационные камеры.

Работают в режиме насыщения. Напряжение насыщения зависит от формы электродов и расстояния между ними. Для абсолютных измерений дозы рентгеновского излучения используют нормальные камеры, которые могут быть цилиндрической или плоской формы. Камера имеет три изолированных от корпуса электрода, выполненных в виде стержней или трубочек диаметром несколько миллиметров: один измерительный «А» и два защитных «В».

Пропорциональные счётчики.

При увеличении напряженности электрического поля в ионизационной камере образующиеся под действием рентгеновских лучей электроны могут приобрести энергию достаточную для ударной ионизации нейтральных молекул газа. Возникающие при вторичной ионизации электроны могут создавать дальнейшую ионизацию. Коэффициент газового усиления 10 4 – 10 6 .

Камеры, работающие в условиях газового усиления, называют пропорциональными счётчиками, так как при попадании в них кванта ионизирующего излучения на электродах возникает импульс, пропорциональный энергии этого кванта. Особенно широко применяют пропорциональные счетчики для регистрации длинноволнового рентгеновского излучения.

Счётчики Гейгера.

Если напряжение на аноде пропорционального счётчика достаточно велико, то выходные импульсы не будут пропорциональны первичной ионизации и их амплитуда, при определенном напряжении, достигает постоянного значения, не зависящего от типа ионизирующих частиц. Этот режим работы счётчика называют областью равных импульсов или областью Гейгера.

В области равных импульсов при попадании в счётчик кванта излучения возникает электронная лавина, которая при движении к аноду возбуждает атомы благородного газа, наполняющего счётчик. Возбужденные атомы испускают кванты ультрафиолетового излучения, которое способствует дальнейшему распространению разряда вдоль нити анода. Счётчики с органической добавкой имеют ограниченный срок службы из-за за разложения гасящей добавки 10 8 – 10 9 отсчётов. Галогенные счётчики могут отсчитывать до 10 12 – 10 13 импульсов.

Счётчики характеризуются параметрами: эффективностью, мёртвым временем и стабильностью.

Промежуток времени, в течение которого счётчик не способен зарегистрировать вновь поступающие кванты излучения, называют мёртвым временем, которое определяется временем движения к катоду положительных ионов, в счётчиках Гейгера составляет 150-300 мкс.

Для рентгеноструктурного анализа выпускают счётчики типа МСТР-3 для длинноволновой области спектра, λ = 0,15 – 0,55 нм, МСТР-5 для коротковолновой области спектра, λ = 0,05 – 0,2 нм и счётчик МСТР-4.

Сцинтилляционные счётчики.

Сцинтилляционные счётчики являются одними из наиболее совершенных приборов для измерения интенсивности рентгеновского излучения. Счётчики состоят из прозрачного люминесцирующего кристалла - сцинтиллятора и фотоэлектронного умножителя (ФЭУ). В качестве сцинтилляторов применяют кристаллы NaI или КI, активированные небольшой примесью таллия. Условное обозначения - NaI (TI) или КI (ТI).

Особенностью сцинтилляционных счётчиков является пропорциональна зависимость между ионизирующей способностью частицы и, следовательно энергией и амплитудой импульса напряжения на выходе фотоумножителя Наличие такой зависимости позволяет с помощью амплитудных анализаторов выделять импульсы, отвечающие квантам определённой энергии - измерять интенсивность излучения, отвечающего определенной длине волны. Мёртвое время счётчиков составляет 1-3 мкс, что позволяет доводить скорость счёта до 5·10 4 без заметного просчёта.

Полупроводниковые счётчики.

Для регистрации рентгеновского излучения нашли применение полупроводниковые (германиевые и кремниевые) счётчики. Счётчиком является полупроводниковый диод с р-п-переходом, к которому приложено в непроводящем направлении напряжение смещения. Напряжение смещения расширяет слой, обедненный носителями заряда, создавая достаточно чувствительный эффективный объём для детектирования ионизирующих частиц.

Фотографический метод регистрации.

Для фотографической регистрации рентгеновских лучей применяется специальная рентгеновская плёнка. Фотографическое действие рентгеновских лучей производит лишь та их доля, которая поглощается в фотоэмульсии. Эта доля зависит от длины волны рентгеновских лучей и понижается с уменьшением длины волны. Слой эмульсии рентгеновской плёнки поглощает ~30% энергии рентгеновских лучей при длине волны 0.11 нм и только 1% при длине волны 0,04 нм. Повышение чувствительности плёнки к коротковолновому излучению может быть достигнуто применением усиливающих экранов.

Ксерорадиографический метод (ксерография).

Этот метод сохраняет основные преимущества фотографического метода, но более экономичен. В методе применяют специальные пластинки из алюминия, на которые способом вакуумного напыления наносят слой аморфного селена толщиной 100 мкм. Перед рентгеновской съёмкой пластинку помещают в специальное зарядное устройство.

Люминесцентный метод.

Некоторые вещества под действием рентгеновских лучей светятся видимым светом. Энергетический выход такого свечения невелик и составляет несколько процентов от поглощенной энергии рентгеновских лучей.

Особый интерес представляют люминофоры - вещества, дающие наибольший выход видимого свечения. Наилучшим люминофором с желто-зеленым свечением является смесь Zs + CdS. Эта смесь при различных соотношениях между компонентами позволяет получать свечение с различным спектральным составом.

15.4 Дифракция рентгеновского излучения

По отношению к дифракции рентгеновских лучей кристалл

рассматривается как трехмерная дифракционная решётка. На линейную дифракционную решётку падает плоская монохроматическая волна. Рисунок 15.6.

Рисунок 15.6. Дифракция от плоской решётки

Каждое отверстие в решётке становится источником излучения той же длины волны λ. В результате интерференции волн, испускаемых всеми отверстиями в решётке, образуются дифракционные спектральные линии различных порядков: нулевого, первого, ...n-го. Если разность хода лучей, идущих от соседних отверстий в каком-либо направлении составляет одну длину волны, то в этом направлении возникает спектральная линия 1-го порядка. Спектральная линия 2-го порядка возникает при разности хода 2λ, спектр n-го порядка - при разности хода nλ. Для возникновения дифракционного максимума разность хода должна быть равна nА, где n - целое число, должно выполняться соотношение: а(соsα ± соsλ 0) = nλ

В кристалле а,b, с - длины осей кристаллической решётки, α 0 , β 0 , γ 0 , α, β, γ - углы, образуемые с осями первичным и дифрагированным лучами.

Возникновение дифракционного максимума от трёхмерной кристаллической решётки определяется системой уравнений Лауэ:

где h, k, l - целые числа, называемые индексами отражения или индексами Лауэ.

Уравнение Брега определяет условие дифракции рентгеновского излучения, возникающее при прохождении рентгеновских лучей через кристалл, и имеют такое направление, что их можно рассматривать как результат отражения падающего пучка от одной из систем плоскостей решётки. Отражение происходит, когда удовлетворяется условие:

2d sinθ = nλ, (15.8)

где θ - угол падения первичного пучка рентгеновских лучей на кристаллографическую плоскость, d - межплоскостное расстояние, n - целое число. Рисунок 15.7.

Рисунок 15.7. Схема вывода закона Брегга

В соответствии с уравнениями Лауэ каждое отражение характеризуется индексами (hkl), индексы Миллера () определяют систему кристаллографических плоскостей в решётке. Индексы Миллера не имеют общего множителя. Имеются соотношения между индексами Лауэ (hkl) и индексами Миллера (h’k’l’): h = nh’, k = nk", l = n1"

Система индексов Лауэ с общим множителем n, означает, что наблюдается отражение n-го порядка от плоскостей решётки с индексами Миллера (h’ k’ l’).

Например, отражения с индексами Лауэ (231), (462), (693) являются отражениями 1-го, 2-го и 3-го порядков от плоскостей решетки с индексами Миллера (231).

В случае кубической системы межплоскостное расстояние d и параметр элементарной ячейки «а» связаны соотношением:

где (h’k’l’) ксы Миллера.

Таким образом, для кубического кристалла уравнение Брегга может быть написано в виде:

При использовании индексов Лауэ уравнение (15.10) будет выглядеть более просто:

Значения индексов Лауэ и Миллера для кристаллов разных кристаллических групп (сингоний) приводятся в различной справочной литературе по рентгеноструктурному анализу.

15.5 Методы индицирования дифракционных спектров

Межплоскостные расстояния d i отвечающие отдельным значениям углов отражения в θ i , связаны между собой следующим уравнением:

В уравнении (15.12) a, b, c, α, β, γ обозначают периоды элементарной ячейки и осевые углы, hkl - индексы рассматриваемой плоскости кристаллической решётки.

Зная периоды элементарной ячейки любого вещества, можно для каждой плоскости, характеризуемой определенными значениями индексов (hkl) подсчитать из уравнения (15.12) соответствующие межплоскостные расстояния d hkl .

На практике определяют периоды элементарной ячейки, исходя из известных значений d i . Проблема была бы относительно простой, если бы были известны три целые числа (индексы), соответствующие отдельным значениям d i . Тогда можно было бы использовать шесть значений d hkl из системы уравнений (15.12) и подсчитать неизвестные постоянные: a, b, с, α, β, γ.

Уравнение (15.12) значительно упрощается для кристаллических веществ с высокой симметрией. Поэтому следует начинать с индицирования рентгенограммы материала с кубической структурой.

Индицирование материалов с кубической структурой

Для кубической решётки a = b = с, α = β = γ =90°. После подстановки в уравнение (15.12) и после вычисления определителей, уравнение преобразуется к виду:

Из уравнения Вульфа-Бреггов следует:

Следовательно:

В результате измерений рентгенограммы после пересчёта дуг на углы получаем ряд значений θ i , и sinθ i ;. Эти величины можно обозначить порядковыми «i», в порядке их возрастания, но нельзя применить свойственные им индексы hkl. Экспериментально известны значения sin 2 θ i , не sin 2 θ hkl .

Проблема расшифровки рентгенограмм материалов с кубической структурой сводится к подбору значений ряда целых значений. Эту задачу невозможно решить однозначно без дополнительных условий.

Поэтому используются различные методы индицирования полученных рентгенограмм: метод разностей, веерные диаграммы, различные номограммы и многое другие специальные методы.

15.6 Качественный рентгеновский фазовый анализ

Фазовым анализом называется установление числа фаз в данной системе и их идентификация. Рентгеновский метод фазового анализа основан на том, что каждое кристаллическое вещество даёт специфическую интерференционную картину с определенным количеством, расположением и интенсивностью интерференционных линий, которые определяются природой и расположением атомов в данном веществе.

Каждая фаза обладает своей кристаллической решёткой. Семейства атомных плоскостей, образующих эту решётку, обладают своим, характерным только для данной решётки набором значений межплоскостных расстояний d hkl . Знание межплоскостных расстояний объекта позволяет охарактеризовать его кристаллическую решётку и установить во многих случаях вещество или фазу. Данные о межплоскостных расстояниях для различных фаз приводятся в справочной литературе.

Определение фазового состава поликристаллических веществ по их межплоскостным расстояниям является одной из наиболее распространённых и сравнительно легко решаемых задач рентгеноструктурного анализа.

Эта задача может быть решена для любого поликристаллического вещества независимо от типа его кристаллической решётки.

Из формулы Вульфа- Брэгга (nλ = 2dsinθ) следует:

λ - длина волны характеристического излучения, в котором получена рентгенограмма, величина известная, то задача определения межплоскостных расстояний сводится к определению дифракционных углов θ.

Практически нет двух кристаллических веществ, которые обладали бы одинаковой во всех отношениях кристаллической структурой, поэтому рентгенограммы почти однозначно характеризуют данное вещество и никакое другое. В смеси нескольких веществ каждое из них даёт свою картину рентгеновской дифракции независимо от других. Полученная рентгенограмма смеси представляет собой сумму ряда рентгенограмм, которые получились бы, если бы поочередно снимали каждое вещество в отдельности.

Дифракционный рентгеновский анализ - единственный прямой способ идентификации фаз, которые может иметь даже одно и то же вещество. Например, анализ шести модификаций SiO 2 , модификаций оксидов железа, кристаллических структур сталей и других металлов и сплавов.

Рентгеновский фазовый анализ широко используется в металлургическом производстве для изучения исходных материалов: руды, продуктов обогащения флюсов, агломератов; продуктов плавки при получении сталей; для анализа сплавов при их термической и механической обработке; для анализа различных покрытий из металлов и их соединений; для анализа продуктов окисления и во многих других отраслях промышленности.

К достоинствам рентгеновского фазового анализа следует отнести: высокую достоверность и экспрессность метода. Метод прямой, основан не на косвенном сравнении с какими-либо эталонами или изменениями свойств, а непосредственно даёт информацию о кристаллической структуре вещества, характеризует каждую фазы. Не требует большого количества вещества, анализ можно проводить без разрушения образца или детали, метод допускает оценку количества фаз в смеси.

Применение дифрактометров с ионизационной регистрацией интерференционных линий, например, установок УРС-50ИМ, ДРОН-1, ДРОН-2.0 и других приборов, приводит к повышению чувствительности фазового анализа. Это связано с тем, что при фокусировке по Брэггу - Брентанно рассеянные лучи не фокусируются, и поэтому уровень фона здесь значительно ниже, чем при фотографическом методе регистрации.

15.7. Количественный рентгеновский фазовый анализ

Все разработанные методы количественного фазового анализа основаны на устранении, или на учёте причин, вызывающих отклонение от пропорциональности между концентрацией фазы и интенсивностью интерференционной линии, по которой определяется содержание фазы.

15.7.1 Метод гомологических пар.

Метод используется при фотографической регистрации рентгенограммы и не требует применения эталонного образца и может использоваться для двухфазных систем при условии, что коэффициент поглощения определяемой фазы заметно не отличается от коэффициента поглощения смеси.

Это условие может выполняться в некоторых сплавах, например в двухфазной (α+β)-латуни, в закаленной стали, содержащей остаточный аустенит и мартенсит. Метод может быть применен также к анализу трёхфазной смеси, если содержание третей фазы не выше 5%.

Принцип, положенный в основу метода - коэффициент поглощения анализируемой фазы не отличается от коэффициента поглощения смеси и плотность почернения интерференционной линии D на плёнке находится в линейной части характеристической кривой фотографической эмульсии:

D 1 = k 1 x 1 Q 1 , (15.17)

где k 1 - коэффициент пропорциональности, зависящий от фотообработки и условий получения рентгенограммы; x 1 - массовая доля фазы; Q 1 - отражательная способность кристаллической плоскости (h 1 k 1 l 1).

Если пара близких линий от фаз имеет одинаковые плотности почернений, то, поскольку обе линии находятся на одной рентгенограмме, можно считать k 1 = k 2 и поэтому x 1 Q 1 = x 2 Q 2 , где x 1 и х 2 содержание фаз, входящих в состав материала, Q 1 и Q 2 - отражательные способности соответствующих плоскостей. Учитывая, что x 1 + х 2 = 1 получаем:

Погрешность количественного фазового анализа, при использовании гомологических пар составляет ~ 20%. Использование специальных методов для оценки интенсивности линий снижает относительную погрешность анализа до 5%.

15.7.2 Метод внутреннего стандарта (метод подмешивания).

Количественный фазовый анализ двух- и многофазных смесей можно проводить, подмешивая в порошкообразный образец определенное количество х s эталонного вещества (10 - 20%), с интерференционными линиями которого сравнивают линии определяемой фазы. Метод использовать как при фотографической, так и при ионизационной регистрации дифракционной картины.

Необходимо, чтобы эталонное вещество удовлетворяло следующим условиям: линии эталона не должны совпадать с сильными линиями определяемой фазы; массовый коэффициент поглощения для эталонного вещества μ a должен быть близок к коэффициенту поглощения ц.а анализируемого образца; размер кристаллитов должен составлять 5 - 25 мкм.

Принцип метода - на рентгенограмме, полученной после подмешивания эталонного вещества, интенсивность интерференционной линии анализируемой фазы рассчитывается по уравнению:

Отношение I a /I s представляет собой линейную функцию от х a . Определив отношение для ряда смесей с известным содержанием анализируемой фазы, строят градуировочный график. Для сравнения интенсивностей выбирают определенную пару линий с индексами (h 1 k 1 l 1) определяемой фазы и (h 2 k 2 l 2) эталонного вещества.

15.7.3 Фазовый анализ при наложении линий определяемых фаз.

В некоторых случаях невозможно получить линии определяемой фазы без наложения других линий, в частности линий стандартного вещества. Измеряют суммарную интенсивность наложенной линии I i и сравнивают интенсивности хорошо разрешенной линии стандартного вещества I 1 . Расчёт проводится по формуле:

где х a - массовая доля анализируемой фазы.

Для проведения анализа строят прямолинейный график, который не проходит через начало координат. Для его построения нужны три эталонные смеси.

15.7.4 Метод измерения отношений интенсивностей аналитических линий.

Метод применим для анализа многофазных смесей, когда все компоненты являются кристаллическими фазами. На дифрактометре измеряют интенсивность аналитических (реперных) линий I 1 , I 2 ...1 n по одной для каждой фазы. Составляют систему (n - 1) уравнений:

где х 1 х 2 , ... х n - массовые доли фаз.

Этим методом проводится количественный фазовый анализ сложных по составы материалов с относительной погрешностью 1 - 3%.

15.7.5 Метод измерения массового коэффициента поглощения.

Для чистой фазы для смеси , для отношения

интенсивностей:

где μ - коэффициент поглощения образца; μ 1 - коэффициент поглощения 1-й фазы.

Измерив, коэффициент поглощения образца μ и интенсивность линий I 1 1-й фазы, можно определить массовую долю фазы х i . Значения (I i) 0 и μ i находят из однократного измерения на эталонном образце из чистой фазы. Погрешность определения ц, этим методом составляет 2 - 3%.

15.7.6 Метод «внешнего стандарта» (независимого эталона).

Метод применяют в тех случаях, когда образец нельзя превратить в порошок, также часто используют для стандартизации условий съёмки.

Отношение времени съёмки эталона τ s и образца τ a определяется отношением дуг, занимаемых эталоном I s и образцом I a на окружности цилиндра радиусом, равным радиусу образца.

Таким образом, меняя I s можно изменять отношение линий эталона и образца. Строится градуировочный график для определенного отношения I s /I a и определенной пары интерференционных линий. Для этого производят съёмку смесей с известным содержанием фазы и промеряют интенсивности линий образца (I h 1 k 1 l 1) и эталона (I h 2 k 2 l 2) s . Неизвестное содержание фазы определяется по градуировочному графику из отношения интенсивностей.

При использовании дифрактометра проводится периодическая съёмка эталонного вещества. Анализ проводят с помощью построенного по эталонным смесям градуировочного графика .

Метод внешнего стандарта целесообразно использовать там, где требуется проведение серийного фазового анализа с большой экспрессностью, и где анализируемые образцы имеют качественно однородный и сравнительно постоянный количественный состав.

15.7.7 Метод наложения.

Метод наложения разработан для двухфазного вещества и основан на визуальном сравнении рентгенограмм изучаемого и эталонного вещества. Рентгенограмма наложения получается попеременным экспонированием на одну рентгенограмму чистых компонентов сплава, один из которых экспонируется в течение времени τ 1 другой - в течение времени τ 2 .

Для получения рентгенограмм наложения можно использовать образец в виде шлифа, состоящего из двух цилиндрических секторов, один из которых представляет собой чистую фазу 1, другой - фазу 2. Шлиф ориентирован под углом ψ по отношению к первичному пучку s 0 и вращается вокруг оси АА, перпендикулярной к поверхности шлифа. Рисунок 15.8.

Рисунок 15.8. Схема съёмки методом наложения

При вращении шлифа фазы 1 и 2 попеременно попадают под первичный пучок. Время экспонирования каждой фазы определяется углом раствора соответствующего сектора:

Меняя угол α, можно получить рентгенограммы, соответствующие различным концентрациям фаз 1 и 2.

При съёмке рентгенограмм наложения по методу шлифа интенсивность линии I 1 ’ структурного компонента сплава определяется формулой:

где Q 1 - отражающая способность плоскости с индексами (h 1 k 1 l 1); μ 1 - линейный коэффициент поглощения фазы 1; k 1 - коэффициент, зависящий от брегговского угла θ и условий съемки; ν 1 = соsecψ + соsec(2ν 1 – ψ); ψ - угол между первичным лучом и плоскостью шлифа.

Аналогично для фазы 2. Абсолютная погрешность метода наложения Δc ~ 5% в интервале концентраций 10 - 90%. Достоинством метода является его экспрессность.

15.8. Методы практического расчёта параметров элементарной ячейки

Для определения периодов кристаллической решётки необходимо рассчитать межплоскостные расстояния выбранных дифракционных отражений, определить их индексы интерференции - индицирование отражений. После индицирования рентгеновских максимумов по записанной дифрактограмме период кристалла кубической сингонии определяется по формуле:

Период кристаллической решётки основной фазовой составляющей сплава рассчитывается по нескольким отражениям с достаточно большими дифракционными углам θ > 60°. Ошибка при расчёте периодов определяется для используемых отражений по формуле:

Δa = a·ctgθΔθ (15.25)

Δа зависит от угла θ, поэтому значения периода, полученные от разных дифракционных максимумов нельзя усреднять. За окончательную величину периода кристалла принимают значения для отражений с максимальным дифракционным углом, либо среднее из значений отражений под углом больше 70°. Наиболее точное значение периода получают методом графической экстраполяции с построением графика зависимости a = f(θ) и экстраполяцией величины периода до угла θ = 90°. Используются различные экстраполяционные зависимости.

Для кристаллов кубических сингонии наиболее лучшие результаты даёт экстраполяционная функция Нельсона-Райли. Рисунок 15.9.

Рисунок 15.9. Экстраполяция при определении периода

кубических сингоний: а – алюминий; б - медь

При правильном выборе экстраполяционных функций экспериментальные точки отклоняются от прямой, величина этих отклонений определяется случайной ошибкой эксперимента. Вид экстраполяционной прямой характеризует систематическую погрешность.

Поскольку ошибка в определении периода элементарной ячейки существенно зависит от угла дифракции, поэтому для точного определения периодов решётки следует подбирать подходящие характеристическое излучение (аноды рентгеновских трубок). Углы дифракции в прецизионной области для кубических кристаллов с периодами 0,3 - 0,5 нм в зависимости от длины волны применяемого излучения приводятся в справочной литературе.

Для кристаллов всех сингоний, кроме кубической, межплоскостные расстояния в общем случае зависят от всех линейных параметров решётки. Для определения периодов необходимо использовать столько линий, сколько различных линейных параметров в решётке данной сингоний.

Для тетрагональной сингонии расчёт параметров проводится по формулам:

Для гексагональной сингонии расчёт периодов проводится по формулам:

Ошибка в расчёте параметров элементарной ячейки:

Графический метод для точного определения размеров элементарной ячейки кубических и одноосных кристаллов даёт результаты достаточно высокой точности, но для кристаллов с более низкой симметрией рациональный использовать аналитический метод (метод Когена). Для кристаллов - ромбических, моноклинных или триклинных, может оказаться неприменимым и метод Когена, так как наличие большого числа линий делает невозможным однозначное индицирование отражений высших порядков. Это затруднение можно свести к минимуму, используя длинноволновое излучение, тогда увеличение угла - расстояния между линиями, приводит к уменьшению их общего числа и, следовательно, к повышению вероятности однозначного индицирования.

Метод Когена - это обработка экспериментальных данных с помощью алгоритма наименьших квадратов, что позволяет свести к минимуму случайные ошибки, при этом систематические ошибки исключают, применяя подходящую экстраполяционную функцию. В методе не принимается во внимание увеличивающаяся точность экспериментальных данных при приближении брегговского угла θ к 90°.

Таким образом, разработано и используется различные методы прецизионного расчёта параметров элементарных ячеек, которые имеют большое практическое применение при изучении формирования твёрдых растворов металлических сплавов, фазовых и структурных превращений при различных методах термической обработки и во многих других технически важных случаях в материаловедении, физики, твёрдого тела.

Положения линий рентгеновской дифракции от образца при работе на дифрактометре со счётчиком устанавливают по распределению интенсивности в дифрагируемом излучении.

За максимум можно принять точку пересечения с дифракционным профилем линии, соединяющей середины горизонтальных хорд, которые проведены на разных высотах. Если дифракционный профиль линии асимметричен, то все эти приёмы дадут неодинаковые значения для дифракционного угла.

Использование центра тяжести дифракционного пика наиболее точный метод, поскольку расчёт максимума дифракционной линии не зависит от симметрии линии. Для правильного отсчёта нужно иметь полный дифракционный профиль линии.

Для нахождения положения максимумов интенсивности определяют положение середины отрезков (хорд), соединяющих точки профиля линии, лежащие по разные стороны от максимума и имеющие равные интенсивности. Интенсивность линии определяют как разность между измеренной интенсивностью и интенсивностью фона, изменение которого в пределах линии считается линейным. Полученные точки соединяют кривой, которая экстраполируется до профиля линии. Рисунок 15.10.

Рисунок 15.10. Определение максимума интенсивности

рентгеновского отражения методом хорд

Рисунок 15.11. Схема определения центра тяжести

дифракционного максимума

Определение центра тяжести дифракционного максимума является более трудоёмкой операцией. Рисунок 15.11.

Положение центра тяжести определяют в единицах х, затем переводят в единицы 2θ по формуле:

где θ 1 и θ 2 - значение углов (в градусах), соответствующих началу и концу

участка измерений.

Определение центра тяжести состоит из следующих операций: разбиение интервала углов, в котором интенсивность линии отлична от нуля на n отрезков; измерение интенсивности в каждой точке х i расчёт положения центра тяжести по формуле (15.30).

15.9 Методы расчёта структурных параметров

кристаллических материалов

15.9.1 Особенности расчёта структурных параметров

Внутренние напряжений, отличаются объёмами, в которых они уравновешиваются:

Макронапряжения, которые уравновешиваются в объёме всего образца или изделия, при наличии макронапряжений удаление какой-либо части детали приводит к нарушению равновесия между остальными частями, что вызывает деформирование (коробление и растрескивание) изделия;

Микронапряжения уравновешиваются в пределах отдельных кристаллов и могут быть как неориентированными, так и ориентированными в направлении усилия, вызвавшего пластическую деформацию;

Статические искажения кристаллической решётки, которые уравновешиваются в пределах небольших групп атомов. В деформированных металлах статические искажения уравновешиваются в группах атомов, лежащих у границ зёрен, плоскостей скольжения и других типах границ. Такие искажения могут быть связаны с дислокациями.

Смещения атомов из идеальных положений (узлов решётки) могут возникать в твёрдых растворах из-за различия размеров атомов и химического взаимодействия между одноименными и разноименными атомами, образующими твёрдый раствор.

Напряжения разных типов приводят к различным изменениям рентгенограмм и дифрактограмм, что позволяет изучать внутренние напряжения рентгенографическим методом.

Результаты, полученные методами рентгеноструктурного анализа, широко используются при разработке новых сплавов, при назначении параметров обработки, контроле технологических процессов. Изучение структуры материалов даёт возможность выявить влияние структурных характеристик на физико-механические свойства материалов. Методы рентгеноструктурного анализа разнообразны, что позволяет получать ценную информацию о структуре металлов и сплавов, которую получить другими методами невозможно.

15.9.2 Методы определения величины микронапряжений

и кристаллических блоков методом аппроксимации

Микроискажения кристаллитов приводят к уширению интерференционных линий на рентгенограммах, которое можно характеризовать величиной Δd/d, где Δd максимальное отклонение межплоскостного расстояния для данной интерференционной линии от его среднего значения d. Рисунок 15.12.

Рисунок 15.12. Расположение семейства атомных плоскостей:

а - отсутствие микронапряжений; б - при наличии микронапряжений

При наличии микронапряжений каждая система атомных плоскостей с одинаковыми индексами интерференции (hkl) имеет вместо строго определённого межплоскостного расстояний d hkl межплоскостное расстояние d + Δd. Величина микронапряжений оценивается по величине относительной деформации кристаллической решётки металлов: . Для кристаллов кубической сингонии: .

Эффект расширения линий на дифрактограмме вызывают также дисперсность кристаллических блоков (ОКР). На ширину линий влияет расходимость первичного рентгеновского характеристического излучения, поглощение материалом образца, расположение и размеры осветительных и аналитических диафрагм - геометрический фактор, наложение или неполное разделение α 1 – α 2 дуплета.

Если известно физическое состояние образца, из которого можно заключить, что физическое уширение линии β с индексами интерференции (hkl) вызвано только наличием микронапряжений или только дисперсностью блоков когерентного рассеяние D hkl меньше 0,1 мкм, то величина искажений решётки в направлении перпендикулярном плоскости отражения (hkl) и размер кристаллических блоков, рассчитываются по формулам:

где λ - длина волны рентгеновского характеристического излучения.

В большинстве случаев в изучаемых металлических сплавах уширение дифракционных отражений вызвано, кроме геометрических факторов наличием микронапряжений и дисперсностью кристаллических блоков. В этом случае расчёт по формулам (15.31) возможен только после выделения факторов m -дисперсность кристаллических блоков и n - наличие микронапряжений в физическом уширении β каждого выбранного дифракционного максимума.

Анализ распределения интенсивности в рентгеновском отражении даёт возможность установить, что величина В - истинное уширение линии, свободное от наложения дуплета α 1 – α 2 связана с физическим уширением линии и b - истинное геометрическое уширение эталона свободное от наложения дуплета, определяются выражением:

Функции g(х) и f(х) определяют угловое распределение интенсивности дифракционного отражения из-за одновременного воздействия геометрии съёмки, наличия микронапряжений и дисперсности областей когерентного рассеяния. Эти функции аппроксимируются различными выражениями, которые с различной степенью точности описывают распределение интенсивности в рентгеновских отражениях. Для металлов с кубическими решётками Бравэ результаты достаточно большой точности даёт аппроксимация по выражению:

При известной аппроксимирующей функции истинное физическое уширение β определяется при съёмке на дифрактометре или фотометодом двух максимумов от изучаемого образца и эталона. Одна из линий имеет небольшой угол отражения с небольшой суммой квадратов индексов интерференции, второй максимум записывается с максимально возможным углом отражения с большой суммой квадратов индексов Миллера, аналогичные максимумы записываются от образца-эталона.

Определив полуширину дифракционных отражений, получают экспериментальное уширение и изучаемого образца «В» и эталона «b».

Экспериментальные общие уширения В и b, полученные при съёмке в характеристическом рентгеновском излучении, являются наложением дуплета α 1 – α 2 . Поэтому необходимо ввести поправку на дуплетность, которая рассчитывается по уравнению:

Схематически метод выделения из экспериментальной ширины рентгеновского максимума компоненты α 1 приводится на рисунке 15.13 (метод Решингера).

Экстропаляционная функция выбирается в зависимости от формы профиля дифракционных максимумов. По исправленным на дуплетность максимумов находят физическое уширение β:

Рисунок 15.13. Схема введения поправки на

дуплетность дифракционного отражения

После выделения физического фактора уширения рентгеновских максимумов следует провести оценку доли влияния дисперсности кристаллических блоков и наличия микронапряжений.

В случае, если кристаллические блоки крупнее 0,1 мкм, то физическое уширение вызвано только микронапряжениями:

из которой следует, что уширение пропорционально tgθ.

В случае, если в образце нет микронапряжений, но кристаллические блоки меньше 0,1 мкм, то физическое уширение вызвано только дисперсностью блоков:

Уширение обратно, пропорционально соsθ.

В большинстве случаев, в металлических сплавах уширение рентгеновских максимумов вызвано обоими факторами: микронапряжениями и дисперсностью кристаллических блоков. В этом случае из физического фактора уширения β нужно выделить m - уширение, вызванное малостью блоков и n - уширение, вызванное наличием микронапряжений:

где N(х) - функция наличия микронапряжений; М(х) - функция, определяющая дисперсность кристаллических блоков.

Уравнение (15.38) с двумя неизвестными неразрешимо, поэтому необходимо использовать две линии дифрактограммы или рентгенограммы, для которых физические факторы уширения будут равны:

Разделим кривую физического уширения на элементы с основанием dу и высотой f(y). На каждый такой элемент действует функция геометрического уширения g(х), что приводит к его размытию в кривую, подобную, g(х). Площадь этого элемента по-прежнему равна f(y)dy. Экспериментальная кривая h(х), полученная от образца, представляет собой наложение множества таких размытых элементов:

Уравнение (15.41) - свёртка функций f(х) и g(х), из симметрии уравнения следует:

Функции h(х), g(х) и f(х) можно выразить через интегралы Фурье:

В уравнениях (15.43) коэффициенты h(х), g(х) и f(х) представляют собой трансформанты Фурье и могут быть выражены уравнениями:

Уравнение (15.45) можно представить в виде:

Учитывая, что lgA БЛ зависит от L, поэтому если получить по нескольким линиям дифрактограммы графики в координатах lgA БЛ для разных дифракционных отражений, то можно определить lgA БЛ и lgA МК.

Номер коэффициента Фурье n связан с расстоянием в кристаллической решётке L уравнением:

где Δ(2θ) - величина интервала разложения экспериментального максимума в радианах для выбранных линий дифрактограммы.

Таким образом, построив график A n = f(L n) и проведя касательную (или секущую) при разных значениях L n , определяется величина

Рентгеновский структурный анализ

методы исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Р. с. а. наряду с нейтронографией (См. Нейтронография) и электронографией (См. Электронография) является дифракционным структурным методом; в его основе лежит взаимодействие рентгеновского излучения с электронами вещества, в результате которого возникает Дифракция рентгеновских лучей . Дифракционная картина зависит от длины волны используемых рентгеновских лучей (См. Рентгеновские лучи) и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны Рентгеновский структурный анализ1 Å, т. е. порядка размеров атомов. Методами Р. с. а. изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Наиболее успешно Р. с. а. применяют для установления атомной структуры кристаллических тел. Это обусловлено тем, что Кристаллы обладают строгой периодичностью строения и представляют собой созданную самой природой дифракционную решётку для рентгеновских лучей.

Историческая справка. Дифракция рентгеновских лучей на кристаллах была открыта в 1912 немецкими физиками М. Лауэ , В. Фридрихом и П. Книппингом. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещенной за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно - след дифракционного луча, рассеянного кристаллом. Рентгенограмма , полученная таким методом, носит название лауэграммы (См. Лауэграмма) (рис. 1 ).

Разработанная Лауэ теория дифракции рентгеновских лучей на кристаллах позволила связать длину волны λ излучения, параметры элементарной ячейки кристалла а, b, с (см. Кристаллическая решётка), углы падающего (α 0 , β 0 , γ 0) и дифракционного (α, β, γ) лучей соотношениями:

a (cosα- cosα 0) = h λ,

b (cosβ - cosβ 0) = k λ, (1)

c (cosγ - cosγ 0) =l λ,

В 50-х гг. начали бурно развиваться методы Р. с. а. с использованием ЭВМ в технике эксперимента и при обработке рентгеновской дифракционной информации.

Экспериментальные методы Р. с. а. Для создания условий дифракции и регистрации излучения служат рентгеновские камеры (См. Рентгеновская камера) и рентгеновские дифрактометры (См. Рентгеновский дифрактометр). Рассеянное рентгеновское излучение в них фиксируется на фотоплёнке или измеряется детекторами ядерных излучений (См. Детекторы ядерных излучений). В зависимости от состояния исследуемого образца и его свойств, а также от характера и объёма информации, которую необходимо получить, применяют различные методы Р. с. а. Монокристаллы, отбираемые для исследования атомной структуры, должны иметь размеры Рентгеновский структурный анализ 0,1 мм и по возможности обладать совершенной структурой. Исследованием дефектов в сравнительно крупных почти совершенных кристаллах занимается Рентгеновская топография , которую иногда относят к Р. с. а.

Метод Лауэ - простейший метод получения рентгенограмм от монокристаллов. Кристалл в эксперименте Лауэ неподвижен, а используемое рентгеновское излучение имеет непрерывный спектр. Расположение дифракционных пятен на лауэграммах (рис. 1 ) зависит от симметрии кристалла (См. Симметрия кристаллов) и его ориентации относительно падающего луча. Метод Лауэ позволяет установить принадлежность исследуемого кристалла к одной и 11 лауэвских групп симметрии и ориентировать его (т. е. определять направление кристаллографических осей) с точностью до нескольких угловых минут. По характеру пятен на лауэграммах и особенно появлению Астеризм а можно выявить внутренние напряжения и некоторые др. дефекты кристаллической структуры. Методом Лауэ проверяют качество монокристаллов при выборе образца для его более полного структурного исследования.

Методы качания и вращения образца используют для определения периодов повторяемости (постоянной решётки) вдоль кристаллографического направления в монокристалле. Они позволяют, в частности, установить параметры а , b, с элементарной ячейки кристалла. В этом методе используют монохроматическое рентгеновское излучение, образец приводится в колебательное или вращательное движение вокруг оси, совпадающей с кристаллографическим направлением, вдоль которого и исследуют период повторяемости. Пятна на рентгенограммах качания и вращения, полученных в цилиндрических кассетах, располагаются на семействе параллельных линий. Расстояния между этими линиями, длина волны излучения и диаметр кассеты рентгеновской камеры позволяют вычислить искомый период повторяемости в кристалле. Условия Лауэ для дифракционных лучей в этом методе выполняются за счёт изменения углов, входящих в соотношения (1) при качании или вращении образца.

Рентгенгониометрические методы. Для полного исследования структуры монокристалла методами Р. с. а. необходимо не только установить положение, но и измерить интенсивности как можно большего числа дифракционных отражений, которые могут быть получены от кристалла при данной длине волны излучения и всех возможных ориентациях образца. Для этого дифракционную картину регистрируют на фотоплёнке в рентгеновском гониометре (См. Рентгеновский гониометр) и измеряют с помощью Микрофотометр а степень почернения каждого пятна на рентгенограмме. В рентгеновском дифрактометре (См. Рентгеновский дифрактометр) можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счётчиков рентгеновских квантов. Чтобы иметь полный набор отражений, в рентгеновских гониометрах получают серию рентгенограмм. На каждой из них фиксируются дифракционные отражения, на миллеровские индексы которых накладывают определённые ограничения (например, на разных рентгенограммах регистрируются отражения типа hk 0, hk 1 и т.д.). Наиболее часто производят рентгеногониометрический эксперимент по методам Вайсенберга. Бюргера (рис. 2 ) и де Ионга - Боумена. Такую же информацию можно получить и с помощью рентгенограмм качания.

Для установления атомной структуры средней сложности (Рентгеновский структурный анализ 50-100 атомов в элементарной ячейке) необходимо измерить интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситометры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). Применением в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся значительно сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Метод исследования поликристаллов (Дебая - Шеррера метод). Металлы, сплавы, кристаллические порошки состоят из множества мелких монокристаллов данного вещества. Для их исследования используют монохроматическое излучение. Рентгенограмма (дебаеграмма) поликристаллов представляет собой несколько концентрических колец, в каждое из которых сливаются отражения от определённой системы плоскостей различно ориентированных монокристаллов. Дебаеграммы различных веществ имеют индивидуальный характер и широко используются для идентификации соединений (в том числе и в смесях). Р.с.а. поликристаллов позволяет определять фазовый состав образцов, устанавливать размеры и преимущественную ориентацию (текстурирование) зёрен в веществе, осуществлять контроль за напряжениями в образце и решать другие технические задачи.

Исследование аморфных материалов и частично упорядоченных объектов. Чёткую рентгенограмму с острыми дифракционными максимумами можно получить только при полной трёхмерной периодичности образца. Чем ниже степень упорядоченности атомного строения материала, тем более размытый, диффузный характер имеет рассеянное им рентгеновское излучение. Диаметр диффузного кольца на рентгенограмме аморфного вещества может служить для грубой оценки средних межатомных расстояний в нём. С ростом степени упорядоченности (см. Дальний порядок и ближний порядок) в строении объектов дифракционная картина усложняется и, следовательно, содержит больше структурной информации.

Метод малоуглового рассеяния позволяет изучать пространственные неоднородности вещества, размеры которых превышают межатомные расстояния, т.е. составляют от 5-10 Å до Рентгеновский структурный анализ 10 000 Å. Рассеянное рентгеновское излучение в этом случае концентрируется вблизи первичного пучка - в области малых углов рассеяния. Малоугловое рассеяние применяют для исследования пористых и мелкодисперсных материалов, сплавов и сложных биологических объектов: вирусов, клеточных мембран, хромосом. Для изолированных молекул белка и нуклеиновых кислот метод позволяет определить их форму, размеры, молекулярную массу; в вирусах - характер взаимной укладки составляющих их компонент: белка, нуклеиновых кислот, липидов; в синтетических полимерах - упаковку полимерных цепей; в порошках и сорбентах - распределение частиц и пор по размерам; в сплавах - возникновение и размеры фаз; в текстурах (в частности, в жидких кристаллах) - форму упаковки частиц (молекул) в различного рода надмолекулярные структуры. Рентгеновский малоугловой метод применяется и в промышленности при контроле процессов изготовления катализаторов, высокодисперсных углей и т.д. В зависимости от строения объекта измерения производят для углов рассеяния от долей минуты до нескольких градусов.

Определение атомной структуры по данным дифракции рентгеновских лучей. Расшифровка атомной структуры кристалла включает: установление размеров и формы его элементарной ячейки; определение принадлежности кристалла к одной из 230 федоровских (открытых Е. С. Федоровым (См. Фёдоров)) групп симметрии кристаллов (См. Симметрия кристаллов); получение координат базисных атомов структуры. Первую и частично вторую задачи можно решить методами Лауэ и качания или вращения кристалла. Окончательно установить группу симметрии и координаты базисных атомов сложных структур возможно только с помощью сложного анализа и трудоёмкой математической обработки значений интенсивностей всех дифракционных отражений от данного кристалла. Конечная цель такой обработки состоит в вычислении по экспериментальным данным значений электронной плотности ρ(х, у, z ) в любой точке ячейки кристалла с координатами x , у, z. Периодичность строения кристалла позволяет записать электронную плотность в нём через Фурье ряд :

где V - объём элементарной ячейки, F hkl - коэффициенты Фурье, которые в Р. с. а. называются структурными амплитудами, i = hkl и связана с тем дифракционным отражением, которое определяется условиями (1). Назначение суммирования (2) - математически собрать дифракционные рентгеновские отражения, чтобы получить изображение атомной структуры. Производить таким образом синтез изображения в Р. с. а. приходится из-за отсутствия в природе линз для рентгеновского излучения (в оптике видимого света для этого служит собирающая линза).

Дифракционное отражение - волновой процесс. Он характеризуется амплитудой, равной ∣F hkl ∣, и фазой α hkl (сдвигом фазы отражённой волны по отношению к падающей), через которую выражается структурная амплитуда: F hkl =∣F hkl ∣(cosα hkl + i sinα hkl ). Дифракционный эксперимент позволяет измерять только интенсивности отражений, пропорциональные ∣F hkl ∣ 2 , но не их фазы. Определение фаз составляет основную проблему расшифровки структуры кристалла. Определение фаз структурных амплитуд в принципиальном отношении одинаково как для кристаллов, состоящих из атомов, так и для кристаллов, состоящих из молекул. Определив координаты атомов в молекулярном кристаллическом веществе, можно выделить составляющие его молекулы и установить их размер и форму.

Легко решается задача, обратная структурной расшифровке: вычисление по известной атомной структуре структурных амплитуд, а по ним - интенсивностей дифракционных отражений. Метод проб и ошибок, исторически первый метод расшифровки структур, состоит в сопоставлении экспериментально полученных ∣F hkl ∣ эксп, с вычисленными на основе пробной модели значениями ∣F hkl ∣ выч. В зависимости от величины фактора расходимости

Принципиально новый путь к расшифровке атомных структур монокристаллов открыло применение т. н. функций Патерсона (функций межатомных векторов). Для построения функции Патерсона некоторой структуры, состоящей из N атомов, перенесём её параллельно самой себе так, чтобы в фиксированное начало координат попал сначала первый атом. Векторы от начала координат до всех атомов структуры (включая вектор нулевой длины до первого атома) укажут положение N максимумов функции межатомных векторов, совокупность которых называется изображением структуры в атоме 1. Добавим к ним ещё N максимумов, положение которых укажет N векторов от второго атома, помещенного при параллельном переносе структуры в то же начало координат. Проделав эту процедуру со всеми N атомами (рис. 3 ), мы получим N 2 векторов. Функция, описывающая их положение, и есть функция Патерсона.

Для функции Патерсона Р (u, υ, ω ) (u, υ, ω - координаты точек в пространстве межатомных векторов) можно получить выражение:

из которого следует, что она определяется модулями структурных амплитуд, не зависит от их фаз и, следовательно, может быть вычислена непосредственно по данным дифракционного эксперимента. Трудность интерпретации функции Р (u, υ, ω ) состоит в необходимости нахождения координат N атомов из N 2 её максимумов, многие из которых сливаются из-за перекрытий, возникающих при построении функции межатомных векторов. Наиболее прост для расшифровки Р (u, υ, ω ) случай, когда в структуре содержится один тяжёлый атом и несколько лёгких. Изображение такой структуры в тяжёлом атоме будет значительно отличаться от др. её изображений. Среди различных методик, позволяющих определить модель исследуемой структуры по функции Патерсона, наиболее эффективными оказались так называемые суперпозиционные методы, которые позволили формализовать её анализ и выполнять его на ЭВМ.

Методы функции Патерсона сталкиваются с серьёзными трудностями при исследовании структур кристаллов, состоящих из одинаковых пли близких по атомному номеру атомов. В этом случае более эффективными оказались Так называемые прямые методы определения фаз структурных амплитуд. Учитывая тот факт, что значение электронной плотности в кристалле всегда положительно (или равно нулю), можно получить большое число неравенств, которым подчиняются коэффициенты Фурье (структурные амплитуды) функции ρ(x , у, z ). Методами неравенств можно сравнительно просто анализировать структуры, содержащие до 20-40 атомов в элементарной ячейке кристалла. Для более сложных структур применяются методы, основанные на вероятностном подходе к проблеме: структурные амплитуды и их фазы рассматриваются как случайные величины; из физических представлений выводятся функции распределения этих случайных величин, которые дают возможность оценить с учётом экспериментальных значений модулей структурных амплитуд наиболее вероятные значения фаз. Эти методы также реализованы на ЭВМ и позволяют расшифровать структуры, содержащие 100-200 и более атомов в элементарной ячейке кристалла.

Итак, если фазы структурных амплитуд установлены, то по (2) может быть вычислено распределение электронной плотности в кристалле, максимумы этого распределения соответствуют положению атомов в структуре (рис. 4 ). Заключительное уточнение координат атомов проводится на ЭВМ Наименьших квадратов метод ом и в зависимости от качества эксперимента и сложности структуры позволяет получить их с точностью до тысячных долей Å (с помощью современного дифракционного эксперимента можно вычислять также количественные характеристики тепловых колебаний атомов в кристалле с учётом анизотропии этих колебаний). Р. с. а. даёт возможность установить и более тонкие характеристики атомных структур, например распределение валентных электронов в кристалле. Однако эта сложная задача решена пока только для простейших структур. Весьма перспективно для этой цели сочетание нейтронографических и рентгенографических исследований: нейтронографические данные о координатах ядер атомов сопоставляют с распределением в пространстве электронного облака, полученным с помощью Р. с. а. Для решения многих физических и химических задач совместно используют рентгеноструктурные исследования и резонансные методы.

Вершина достижений Р. с. а. - расшифровка трёхмерной структуры белков, нуклеиновых кислот и других макромолекул. Белки в естественных условиях, как правило, кристаллов не образуют. Чтобы добиться регулярного расположения белковых молекул, белки кристаллизуют и затем исследуют их структуру. Фазы структурных амплитуд белковых кристаллов можно определить только в результате совместных усилий рентгенографов и биохимиков. Для решения этой проблемы необходимо получить и исследовать кристаллы самого белка, а также его производных с включением тяжёлых атомов, причём координаты атомов во всех этих структурах должны совпадать.

О многочисленных применениях методов Р. с. а. для исследования различных нарушений структуры твёрдых тел под влиянием всевозможных воздействий см. в ст. Рентгенография материалов .

Лит.: Белов Н. В., Структурная кристаллография, М., 1951; Жданов Г. С., Основы рентгеноструктурного анализа, М. - Л., 1940; Джеймс Р., Оптические принципы дифракции рентгеновских лучей, пер. с англ., М., 1950; Бокий Г. Б., Порай-Кошиц М. А., Рентгеноструктурный анализ, М., 1964; Порай-Кошиц М. А., Практический курс рентгеноструктурного анализа, М., 1960: Китайгородский А. И., Теория структурного анализа, М., 1957; Липеон Г., Кокрен В., Определение структуры кристаллов, пер. с англ., М., 1961; Вайнштейн Б. К., Структурная электронография, М., 1956; Бэкон Дж., Дифракция нейтронов, пер. с англ., М., 1957; Бюргер М., Структура кристаллов и векторное пространство, пер. с англ., М., 1961; Гинье А., Рентгенография кристаллов, пер. с франц., М., 1961; Woolfson М. М., An introduction to X-ray crystallography, Camb., 1970: Ramachandran G. N., Srinivasan R., Fourier methode in crystallography, N. Y., 1970; Crystallographic computing, ed. F. R. Ahmed, Cph., 1970; Stout G. H., Jensen L. H., X-ray structure determination, N. Y. - L., .

В. И. Симонов.

Рис. 9. а. Проекция на плоскость ab функции межатомных векторов минерала баотита O 16 Cl]. Линии проведены через одинаковые интервалы значений функции межатомных векторов (линии равного уровня). б. Проекция электронной плотности баотита на плоскость ab, полученная расшифровкой функции межатомных векторов (a). Максимумы электронной плотности (сгущения линий равного уровня) отвечают положениям атомов в структуре. в. Изображение модели атомной структуры баотита. Каждый атом Si расположен внутри тетраэдра, образованного четырьмя атомами O; атомы Ti и Nb - в октаэдрах, составленных атомами O. Тетраэдры SiO 4 и октаэдры Ti(Nb)O 6 в структуре баотита соединены, как показано на рисунке. Часть элементарной ячейки кристалла, соответствующая рис. а и б, выделена штриховой линией. Точечные линии на рис. а и б определяют нулевые уровни значений соответствующих функций.

Физическая энциклопедия - РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ, исследование атомной структуры образца вещества по картине дифракции на нем рентгеновского излучения. Позволяет установить распределение электронной плотности вещества, по которому определяют род атомов и их… … Иллюстрированный энциклопедический словарь

- (рентгеноструктурный анализ), совокупность методов исследования атомной структуры вещества с помощью дифракции рентгеновских лучей. По дифракционной картине устанавливают распределение электронной плотности вещества, а по ней род атомов и их… … Энциклопедический словарь

- (рентгено структурный анализ), метод исследования атомно мол. строения в в, гл. обр. кристаллов, основанный на изучении дифракции, возникающей при взаимод. с исследуемым образцом рентгеновского излучения длины волны ок. 0,1 нм. Используют гл. обр … Химическая энциклопедия - (см. РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ, НЕЙТРОНОГРАФИЯ, ЭЛЕКТРОНОГРАФИЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

Определение строения в в и материалов, т. е. выяснение расположения в пространстве составляющих их структурных единиц (молекул, ионов, атомов). В узком смысле С. а. определение геометрии молекул и мол. систем, к рую обычно описывают набором длин… … Химическая энциклопедия

В рентгеноструктурном анализе в основном используются три метода:
1.Метод Лауэ. В этом методе пучок излучения с непрерывным спектром падает на неподвижный монокристалл. Дифракционная картина регистрируется на неподвижную фотопленку.
2. Метод вращения монокристалла. Пучок монохроматического излучения падает на кристалл, вращающийся (или колеблющийся) вокруг некоторого кристаллографического направления. Дифракционная картина регистрируется на неподвижную фотопленку. В ряде случаев фотопленка движется синхронно с вращением кристалла; такая разновидность метода вращения носит название метода развертки слоевой линии.
3. Метод порошков или поликристаллов (метод Дебая-Шеррера-Хэлла). В этом методе используется монохроматический пучок лучей. Образец состоит из кристаллического порошка или представляет поликристаллический агрегат.

Также применяется метод Косселя - неподвижный монокристалл снимается в широко расходящемся пучке монохроматического характеристического излучения.

Метод Лауэ.

Метод Лауэ применяется на первом этапе изучения атомной структуры кристаллов. С его помощью определяют сингонию кристалла и лауэвский класс (кристаллический класс Фриделя с точностью до центра инверсии). По закону Фриделя никогда невозможно обнаружить отсутствие центра симметрии на лауэграмме и поэтому добавление центра симметрии к 32-м кристаллическим классам уменьшает их количество до 11. Метод Лауэ применяется главным образом для исследования монокристаллов или крупнокристаллических образцов. В методе Лауэ неподвижный монокристалл освещается параллельным пучком лучей со сплошным спектром. Образцом может служить как изолированный кристалл, так и достаточно крупное зерно в поликристаллическом агрегате. Формирование дифракционной картины происходит при рассеянии излучения с длинами волн от l min = l 0 = 12,4/U , где U- напряжение на рентгеновской трубке, до l m - длины волны, дающей интенсивность рефлекса (дифракционного максимума), превышающую фон хоть бы на 5 %. l m зависит не только от интенсивности первичного пучка (атомного номера анода, напряжения и тока через трубку), но и от поглощения рентгеновских лучей в образце и кассете с пленкой. Спектру l min - l m соответствует набор сфер Эвальда с радиусами от 1/ l m до 1/l min , которые касаются узла 000 и ОР исследуемого кристалла (рис.1).

Тогда для всех узлов ОР, лежащих между этими сферами, будет выполняться условие Лауэ (для какой-то определенной длины волны в интервале (l m ¸ l min)) и, следовательно, возникает дифракционный максимум - рефлекс на пленке. Для съемки по методу Лауэ применяется камера РКСО (рис.2).

Здесь пучок первичных рентгеновских лучей вырезается диафрагмой 1 с двумя отверстиями диаметрами 0,5 - 1,0 мм. Размер отверстий диафрагмы подбирается таким образом, чтобы сечение первичного пучка было больше поперечного сечения исследуемого кристалла. Кристалл 2 устанавливается на гониометрической головке 3, состоящей из системы двух взаимно перпендикулярных дуг. Держатель кристалла на этой головке может перемещаться относительно этих дуг, а сама гониометрическая головка может быть повернута на любой угол вокруг оси, перпендикулярной к первичному пучку. Гониометрическая головка позволяет менять ориентацию кристалла по отношению к первичному пучку и устанавливать определенное кристаллографическое направление кристалла вдоль этого пучка. Дифракционная картина регистрируется на фотопленку 4, помещенную в кассету, плоскость которой расположена перпендикулярно к первичному пучку. На кассете перед фотопленкой натянута тонкая проволочка, расположенная параллельно оси гониометрической головки. Тень от этой проволочки дает возможность определить ориентацию фотопленки по отношению к оси гониометрической головки. Если образец 2 располагается перед пленкой 4 , то рентгенограммы, полученные таким образом называются лауэграммами. Дифракционная картина, регистрируемая на фотопленку, расположенную перед кристаллом, называется эпиграммой. На лауэграммах дифракционные пятна располагаются по зональным кривым (эллипсам, параболам, гиперболам, прямым). Эти кривые являются сечениями дифракционных конусов плоскостью и касаются первичного пятна. На эпиграммах дифракционные пятна располагаются по гиперболам, не проходящим через первичный луч. Для рассмотрения особенностей дифракционной картины в методе Лауэ пользуются геометрической интерпретацией с помощью обратной решетки. Лауэграммы и эпиграммы являются отображением обратной решетки кристалла. Построенная по лауэграмме гномоническая проекция позволяет судить о взаимном расположении в пространстве нормалей к отражающим плоскостям и получить представление о симметрии обратной решетки кристалла. По форме пятен лауэграммы судят о степени совершенства кристалла. Хороший кристалл дает на лауэграмме четкие пятна. Симметрию кристаллов по лауэграмме определяют по взаимному расположению пятен (симметричному расположению атомных плоскостей должно отвечать симметричное расположение отраженных лучей).

Рис.2

Рис.3

Метод вращения монокристалла.

Метод вращения является основным при определении атомной структуры кристаллов. Этим методом определяют размеры элементарной ячейки, число атомов или молекул, приходящихся на одну ячейку. По погасаниям отражений находят пространственную группу (с точностью до центра инверсии). Данные по измерению интенсивности дифракционных максимумов используют при вычислениях, связанных с определением атомной структуры.

При съемке рентгенограмм методом вращения кристалл вращается или покачивается вокруг определенного кристаллографического направления при облучении его монохроматическим или характеристическим рентгеновским излучением. Схема камеры для съемки по методу вращения приведена на рис.1.

Первичный пучок вырезается диафрагмой 2 (с двумя круглыми отверстиями) и попадает на кристалл 1. Кристалл устанавливается на гониометрической головке 3 так, чтобы одно из его важных направлений (типа , [ 010], ) было ориентировано вдоль оси вращения гониометрической головки. Гониометрическая головка представляет собой систему двух взаимно перпендикулярных дуг, которая позволяет устанавливать кристалл под нужным углом по отношению к оси вращения и к первичному пучку рентгеновских лучей. Гониометрическая головка приводится в медленное вращение через систему шестерен с помощью мотора 4. Дифракционная картина регистрируется на фотопленке 5, расположенной по оси цилиндрической поверхности касеты определенного диаметра (86,6 или 57,3 мм). При отсутствии внешней огранки ориентация кристаллов производится методом Лауэ; для этой цели в камере вращения предусмотрена возможность установки касеты с плоской пленкой.

Дифракционные максимумы на рентгенограмме вращения располагаются вдоль прямых, называемых слоевыми линиями.

Максимумы на рентгенограмме располагаются симметрично относительно вертикальной линии, проходящей через первичное пятно (пунктир на рисунке 2). Часто на рентгенограммах вращения наблюдаются непрерывные полосы, проходящие через дифракционные максимумы. Появление этих полос обусловлено присутствием в излучении рентгеновской трубки непрерывного спектра наряду с характеристическим. При вращении кристалла вокруг главного (или важного) кристаллографического направления вращается связанная с ним обратная решетка. При пересечении узлами обратной решетки сферы распространения возникают дифракционные лучи, располагающиеся по образующим конусов, оси которых совпадают с осью вращения кристалла. Все узлы обратной решетки, пересекаемые сферой распространения при ее вращении, составляют эффективную, область, т.е. определяют область индексов дифракционных максимумов, возникающих от данного кристалла при его вращении. Для установления атомной структуры вещества необходимо индицирование рентгенограмм вращения. Индицирование обычно проводится графически с использованием представлений обратной решетки. Методом вращения определяют периоды решетки кристалла, которые вместе с определенными методом Лауэ углами позволяют найти объем элементарной ячейки. Используя данные о плотности, химическом составе и объеме элементарной ячейки, находят число атомов в элементарной ячейке.

Рис.1

Рис.2

Метод порошков (поликристаллов).

Метод порошков используют для получения дифракционной картины от поликристаллических веществ в виде порошка или массивного образца (поликристалла) с плоской поверхностью шлифа. При освещении образцов монохроматическим или характеристическим рентгеновским излучением возникает отчетливый интерференционный эффект в виде системы коаксиальных дебаевских конусов, осью которых является первичный луч (рис.1).
Дифракционные условия выполняются для тех кристаллов, в которых плоскости (hkl) образуют угол q с падающим излучением. Линии пересечения дебаевских конусов с пленкой, называются дебаевскими кольцами. Для регистрации интерференционной картины в методе порошков используют несколько способов расположения пленки по отношению к образцу и первичному пучку рентгеновских лучей: съемка на плоскую, цилиндрическую и конусную фотопленку. Регистрация может производиться также с помощью счетчиков. Для этой цели используют дифрактометр.

При фотографическом методе регистрации интерференционной картины применяются несколько типов съемок:

1.
Плоская фотопленка. Используются два способа расположения фотопленки: передняя и задняя (обратная) съемка. При передней съемке образец располагается перед фотопленкой по отношению к направлению первичного пучка лучей. На фотопленке регистрируется ряд концентрических окружностей, которые соответствуют пересечению с плоскостью фотопленки интерференционных конусов с углом раствора q < 3 0 0 . Измерив диаметр колец, зарегистрированных на пленке, можно определить угол q для соответствующих интерференционных конусов. Недостатком такого способа съемки является то, что на фотопленке регистрируется только небольшое число дифракционных колец. Поэтому переднюю съемку на плоскую пленку применяют в основном для исследования текстур, при котором необходимо определить распределение интенсивности по полному дифракционному кольцу. При задней съемке образец располагается по отношению к пучку рентгеновских лучей сзади пленки. На пленке регистрируются максимумы, отвечающие углу q > 3 0 0 . Обратную съемку применяют при точных определениях периодов и при измерении внутренних напряжений.

2.Цилиндрическая фотопленка.

Ось цилиндра, по которому располагается фотопленка, перпендикулярна к первичному пучку (рис.2).

Угол q вычисляется из промера расстояний между линиями 2 l, отвечающими одному и тому же интерференционному конусу, по соотношениям:

2 l = 4 q R; q = (l/ 2R) (180 0 / p),

где R - радиус цилиндрической касеты, по которой располагалась фотопленка. В цилиндрической камере фотопленка может располагаться несколькими способами - симметричный и асимметричный способы зарядки пленки. При симметричном способе зарядки концы пленки располагаются вблизи диафрагмы, через которую в камеру входит пучок первичных лучей. Для выхода этого пучка из камеры в пленке делается отверстие. Недостатком такого способа зарядки является то, что в процессе фотообработки пленка сокращается по длине, в результате чего при расчете рентгенограммы следует использовать не значение радиуса R, по которому располагалась пленка во время съемки, а некоторую величину R эфф. R эфф. определяется путем съемки эталонного вещества с известными периодами решетки. По известному периоду решетки эталона определяют теоретически углы отражения q расч. , из значений которых в комбинации с промеренными по рентгенограмме расстояниями между симметричными линиями определяют величину R эфф.

При асимметричном способе зарядки пленки концы пленки располагают под углом 90 0 по отношению к первичному пучку (в фотопленке делают два отверстия для входа и выхода пучка первичных лучей). В этом способе R эфф. определяется без съемки эталона. Для этого на рентгенограмме промеряют расстояния А и В между симметричными линиями (рис.3):

R эфф. = (А+В)/ 2p ;

Общий вид камеры Дебая для съемки дебаеграмм представлен на рисунке 4.

Цилиндрический корпус камеры укреплен на подставке 3, снабженной тремя установочными винтами. Ось цилиндра расположена горизонтально. Образец (тонкий столбик) ставится в держателе 1, который закрепляется в камере на магните. Центрирование образца при установке его в держателе проводят в поле зрения специального установочного микроскопа с малым увеличением. Фотопленку располагают на внутренней поверхности корпуса, прижимая специальными распорными кольцами, закрепленными на внутренней стороне крышки камеры 4. Пучок рентгеновских лучей, омывающий образец, попадает в камеру через коллиматор 2. Так как первичный пучок, попадая непосредственно на пленку позади образца, вуалирует рентгенограмму, его перехватывают по пути к пленке ловушкой. Для устранения пунктирности колец на рентгенограмме крупнокристаллического образца при съемке его вращают. Коллиматор в некоторых камерах делают так, что, вкладывая в специальные пазы спереди и сзади него свинцовые или латунные кружки (экраны) с отверстиями, можно вырезать пучок лучей круглого или прямоугольного сечения (круглая и щелевая диафрагмы). Размеры отверстий диафрагмы следует подбирать так, чтобы пучок лучей омывал образец. Обычно камеры изготавливают так, чтобы диаметр пленки в ней был кратен 57,3 мм (т.е. 57,3; 86,0; 114,6 мм). Тогда расчетная формула для определения угла q , град, упрощается. Например, для стандартной камеры Дебая диаметром 57,3 мм q i = 2l/2. Прежде чем переходить к определению межплоскостных расстояний, используя формулу Вульфа-Брэгга:

2 d sin q = n l ,

следует учесть, что положение линий на рентгенограмме от столбика несколько изменяется в зависимости от радиуса образца. Дело в том, что вследствие поглощения рентгеновских лучей в формировании дифракционной картины участвует тонкий поверхностный слой образца, а не его центр. Это приводит к смещению симметричной пары линий на величину:

D r = r cos 2 q , где r - радиус образца.

Тогда: 2 l i = 2 l изм. ± D 2l - D r.

Поправка D 2l , связанная с изменением величины расстояния между парой линий из-за усадки пленки в процессе фотообработки, затабулирована в справочниках и пособиях по рентгеноструктурному анализу. По формуле q i = 57,3 (l/ 2 R эфф.). После определения q i находят sinq i и по ним для линий, полученных в К a - излучении определяют межплоскостное расстояние:

(d/n) i = l K a / 2 sin q i K a .

Чтобы отделить линии, полученные дифракцией от тех же плоскостей излучения l K b , используют фильтрованное характеристическое излучение или проводят расчет таким образом. Так как:

d/n = l K a / 2 sin q a = l K b /2 sin q b ;

sin q a /sin q b = l K a / l K b » 1.09, откуда sinq a = 1,09 sinq b .

В ряду sinq находят значения, соответствующие наиболее интенсивным отражениям. Далее находится линия, для которой sinq оказывается равным вычисленному значению, а интенсивность ее в 5-7 раз меньше. Это означает, что эти две линии возникли из-за отражения лучей Кa и Кb соответственно от плоскостей с одним и тем же расстоянием d/n.

Определение периодов кристаллических решеток сопряжено с некоторыми погрешностями, которые связаны с неточным измерением вульф-брэгговского угла q . Высокой точности определения периодов (погрешность 0,01- 0,001 %) можно достигнуть применяя особые методы съемки и обработки результатов измерения рентгенограмм, так называемых прецизионных методов. Достижение максимальной точности в определении периодов решетки возможно следующими методами:

1. использованием значений межплоскостных расстояний, определенных из углов в прецизионной области;

2. уменьшением погрешности в результате применения точной экспериментальной техники;

3. использованием методов графической или аналитической экстраполяции.

Минимальная погрешность D d/d получается при измерениях под углами q = 80¸ 83 0 . К сожалению, далеко не все вещества дают на рентгенограмме линии под такими большими углами. В этом случае для измерений следует использовать линию под возможно большим углом q . Увеличение точности определения параметров ячейки связано также с уменьшением случайных ошибок, которые можно учесть только усреднением, и с учетом систематических погрешностей, которые могут быть учтены, если известны причины их возникновения. Учет систематических погрешностей при определении параметров решетки сводится к нахождению зависимости систематических погрешностей от брэгговского угла q , что позволяет провести экстраполяцию к углам q = 90 0 , при которых погрешность определения межплоскостных расстояний становится малой. К случайным погрешностям относятся.

Похожие статьи

© 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.