Марки рессорно-пружинной стали, применяемые в промышленности. Рессорная сталь: описание, характеристики, марка и отзывы Из какой стали делают рессоры москвича

Казанский Государственный Технический Университет им. А. Н. Туполева

Институт авиации, наземного транспорта и энергетики

Кафедра: «Материаловедение и структура образующих технологий»

Дисциплина: «Материаловедение ч.2»

Курсовая работа

Тема: «Пружинные стали»

Выполнена:

Проверил:

Елабуга, 2009 г.


План:

1. Описание

2. Применение

3. Маркировка и основные характеристики

4. Особенность вальцовки пружинной стали

5. Основные требования, предъявляемые к рессорно-пружинной стали

6. Характеристика материала 68А

7. Литература

Описание:

Пружинная сталь - сталь, предназначенная для изготовления упругих элементов (пружин, рессор и т.д.)

Работа пружин, рессор и тому подобных деталей характеризуется тем, что в них используют только упругие свойства стали. Большая суммарная величина упругой деформации пружины (рессоры и т. д.) определяется ее конструкцией - числом и диаметром витков, длиной пружины. Поскольку возникновение пластической деформации в пружинах не допускается, то от материала подобных изделий не требуется высокой ударной вязкости и высокой пластичности. Главное требование состоит в том, чтобы сталь имела высокий предел упругости (текучести). Это достигается закалкой с последующим отпуском при температуре в районе 300-400° С. При такой температуре отпуска предел упругости (текучести) получает наиболее высокое значение, а то, что эта температура лежит в интервале развития отпускной хрупкости I рода, в силу отмеченного выше обстоятельства не имеет большого значения.

Пружины, рессоры и подобные им детали изготавливают из конструкционных сталей с повышенным содержанием углерода (но, как правило, все же более низким, чем у инструментальных сталей) - приблизительно в пределах 0,5-0,7% С, часто с добавками марганца и кремния. Для особо ответственных пружин применяют сталь 50ХФ, содержащую хром и ванадий и обладающую наиболее высокими упругими свойствами. Термическая обработка пружин и рессор из легированных сталей заключается в закалке от 800-850° С (в зависимости от марки стали) в масле или в воде с последующим отпуском в районе 400-500° С на твердость НRС 35-45. Это соответствует ст в = 1304-1600 кгс/мм 2 .

Иногда такой термической обработке подвергают детали конструкций большой длины и с тонкими стенками, которые должны обладать высокими пружинящими свойствами. В этом случае применяют сталь ЗОХГС; после закалки и отпуска при 250° С она будет иметь прочность (а в) 160 кгс/мм 2 , но вязкость (а д) всего лишь 5 кгс-м/см 2 , а пластичность (б) 7% и (ф.) 40%. Часто пружины изготавливают из шлифованной холоднотянутой проволоки (так называемой серебрянки). Наклеп (нагартовка) от холодной протяжки создает высокую твердость и упругость. После навивки (или другого способа изготовления) пружину следует отпустить при 250-350°С для снятия внутренних напряжений, что повысит предел упругости. Для изготовления серебрянки применяют обычные углеродистые инструментальные стали У7, У8, У9, У10.

На качество и работоспособность пружины большое влияние оказывает состояние поверхности. При наличии трещин, плен и других поверхностных дефектов пружины оказываются нестойкими в работе и разрушаются, вследствие развития усталостных явлений в местах концентрации напряжений вокруг этих дефектов. Кроме обычных пружинных материалов, имеются и специальные, работающие в специфических условиях (повышенные температуры, агрессивные среды, и т. д.).

Общая характеристика: сталь рессорно-пружинная, малочувствительна к флокенообразованию, склонна к отпускной хрупкости при содержании Mn≥1%, не применяется для сварных конструкций. Плотность при 20°С - 7,81х10³кг/м³. Модуль нормальной упругости при 20°С - 215 Гпа. Удельная теплоёмкость при 20-100°С - 490 Дж/(кг·°С)

Они работают в области упругой деформации металла под воздействием циклических нагрузок. Поэтому они должны иметь высокое значение предела упругости, текучести, выносливости при необходимости пластичности и высоком сопротивлении хрупкому разрушению.

Пружинные стали содержат С = 0,5 - 0,75% , Si до 2,8%, Mn до 1,2%, Cr до 1,2%, V до 0,25%, Bе до 1,2%, Ni до 1,7%. При этом происходит измельчение зерна, способствующее возрастанию сопротивления стали малым пластическим деформациям, а следовательно, ее релаксационной стойкости. Широкое применение на транспорте нашли кремнистые стали 55С2, 60С2А, 70С3А. Однако они могут подвергаться обезуглероживанию, графитизации, резко снижающим характеристики упругости и выносливости материала. Устранение указанных дефектов, а также повышение прокаливаемости и торможение роста зерна при нагреве достигается дополнительным введением в кремнистые стали хрома, ванадия, вольфрама и никеля. Для изготовления пружин также используют холоднотянутую проволоку (или ленту) из высокоуглеродистых сталей 65, 65Г, 70, У8, У10 и др.. Применяются также пружины специального назначения из мартенситных сталей 30Х13А, мартенситно - стареющих 03Х12Н10Д2Т, аустенитно-мартенситных 09Х15Н8Ю и других сталей и сплавов. Стали закаливают с температур 830 - 880°С и отпускают на тростит (380 - 550°С).

Имеют высокий предел текучести. Отношение предела текучести к пределу прочности 0,8−0,9. Для листовых рессор и пружин подвесок применяют кремнистые и марганцовистые стали 50ХГ, 50Г2, 05Г, 55С2 и др. Для торсионных валов используются стали 45ХНМФА, G0C2A, 70СЗА.

Для повышения усталостной прочности деталей, работающих при высоких колебательных нагрузках, необходимо обеспечить в поверхностном слое создание остаточных сжимающих напряжений. С этой целью применяют заневоливание пружин, заневоливание и чеканку торсионных валов, обкатку роликами, пластическую осадку и дробеструйную обработку листовых рессор. Легированная рессорно-пружинная сталь, термообработанная до твердости HRC 45-50, имеет предел усталости при кручении 190 МПа. После дробеструйной обработки предел усталости увеличивается до 350 МПа (3500 кгс/см2).

Применение:

Пружины, рессоры, упорные шайбы, тормозные ленты, фрикционные диски, шестерни, фланцы, корпусы подшипников, зажимные и подающие цанги и другие детали, к которым предъявляются требования повышенной износостойкости, и детали, работающие без ударных нагрузок.

Виды поставляемой продукции: в горячекатаном состоянии (без термообработки) с твёрдостью не более НВ285; в высокоотпущенном состоянии - не более НВ241

Маркировка и основные характеристики:

Марки пружинных сталей:

Основные механические свойства рессорно-пружинной стали после специальной термической обработки.

Марка стали Рекомендуемый режим термической обработки Механические свойства
σт,кгс/мм2 σв,кгс/мм2 δ5 , % φ , %
Температура закалки, °С Закалочная среда Температура отпуска
Не менее
65 840 Масло 480 80 100 10 35
70 830 » 480 85 105 9 30
75 820 » 480 90 110 9 30
85 820 » 480 100 115 8 30
60Г 840 » 480 80 100 8 30
65Г 830 Масло 480 80 100 8 30
70Г 830 » 480 85 105 7 25
55ГС 820 » 480 80 100 8 30
50С2 870 Масло или вода 460 110 120 6 30
55С2 870 То же 460 120 130 6 30
55С2А 870 » » 460 120 130 6 30
60С2 870 Масло 460 120 130 6 25
60С2А 870 » 420 140 160 6 20
70С3А 860 » 460 160 180 6 25
50ХГ 840 » 440 110 130 7 35
50ХГА 840 » 440 120 130 7 35
55ХГР 830 » 450 125 140 5 30
50ХФА 850 » 520 110 130 8 35
50ХГФА 850 » 520 120 130 6 35
60С2ХФА 850 » 410 170 190 5 20
50ХСА 850 » 520 120 135 6 30
65С2ВА 850 » 420 170 190 5 20
60С2Н2А 880 » 420 160 175 6 20
60С2ХА 870 » 420 160 180 5 20
60СГА 860 » 460 140 160 6 25

Особенность вальцовки пружинной стали:

Особенность состоит в последовательности термообработки таких сталей. Так, при навивке пружин пруток находится в отожженном состоянии, что обеспечивает простоту выполнения операции. Затем пружину закаливают. Последний этап - низкий отпуск (130...150 град.), он еще называется пружинным.

Основные требования, предъявляемые к рессорно-пружинной стали:

Общее требование, предъявляемое к рессорно-пружинным сталям, - обеспечение высокого сопротивления малым пластическим деформациям (предел упругости) и релаксационной стойкости (сопротивление релаксации напряжений). Эти характеристики обеспечивают точность и надёжность работы пружин и постоянство во времени таких эксплуатационных свойств, как крутящий момент, силовые параметры. Пружинные стали в виде проволоки и ленты упрочняют холодной пластической деформацией и закалкой на мартенсит с последующим отпуском. Готовые пружины подвергают стабилизирующему отпуску.

  • Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений
  • Классификация сплавов твердых растворов
  • Вопрос 11. Стали
  • Вопрос 12.
  • 13Классификация углеродистых сталей.
  • 14. Влияние углерода и постоянных примесей на структуру и свойства стали
  • 15. Углеродистая сталь обыкновенного качества общего назначения. Химический состав, свойства, обозначение, применение.
  • 15Углеродистая сталь обыкновенного качества общего назначения. Химический состав, свойства, обозначение, применение.
  • 18. Общая характеристика процесса графитизации. Классы чугунов по структуре металлической основы. Белый и отбеленный чугун.
  • 19. Серый, высокопрочный и ковкий чугун. Строение, свойства, условия получения, обозначение, применение.
  • 16 Углеродистая качественная конструкционная сталь. Химический состав, свойства, обозначение, применение
  • 17. Углеродистая инструментальная сталь. Химический состав, свойства, обозначение, применение.
  • 20.Теория термической обработки стали. Фазовые превращения при нагреве. Рост зерна аустенита при нагреве.
  • 21.Перлитное и мартенситное превращение
  • 22. Влияние то на свойства стали. Виды то.
  • 23. Отжиг и нормализация стали. Отжиг первого и второго рода.
  • 24. Способы закалки стали, охлаждающие среды.
  • 31.Рессорно-пружинные стали
  • 34.Инструментальные легированные стали. Общая характеристика, примеры, применение.
  • 35. Бронза и латунь. Общая характеристика, обозначение, применение
  • 36. Литейные и деформируемые алюминиевые сплавы
  • 38 Получение чугуна. Исходные материалы. Сущность процесса доменной плавки
  • 39 Устройство и работа доменной печи схема
  • 40. Выплавка стали. Исходные материалы, их подготовка. Сущность процесса
  • 41 Способы выплавки стали.
  • 42 Производство стали в мартеновских печах. Материалы, устройство мартеновской печи(схема). Продукция мартеновского производства.
  • 45 Специальные методы литья
  • 46. Классификация процессов обработки давлением
  • 47. Нагрев при обработке металлов давлением. Понятие о температурном интервале
  • 48. Горячая объемная штамповка. Сущность, схемы и способы гош: в открытых и закрытых штампах, их особенности, преимущества и недостатки
  • 55.Контактная сварка
  • 56. Классификация методов обработки резанием
  • 57. Класификация металлорежущих станков
  • 61.Классификация этм. Свойства и количественные характеристики проводников.
  • 62.Проводниковые материалы и их применение. Материалы с высокой проводимостью. Материалы с высоким удельным сопротивлением. Резистивные материалы. Материалы и сплавы различного назначения.
  • 63.Поляризация диэлектриков. Механизмы поляризации. Виды поляризации.
  • 67. Электропроводность, фотопроводимость полупроводников
  • 68. Классификация полупроводниковых материалов
  • 69. Методы получения монокристаллов
  • 72. Магнитные материалы их свойства и применение
  • 73. Магнитомягкие материалы
  • 74. Магнитотвёрдые материалы
  • 31.Рессорно-пружинные стали

    Стали, предназначенные для изготовления пружин и рессор, должны допускать большие упругие деформации и иметь пластические свойства, обеспечивающие работу витых и других пружин без поломок при перегрузках,должны противостоять циклическим нагрузкам (особенно колебательного характера). В соответствии с этим стали для пружин и рессор должны обладать высоким пределом упругости и пределом выносливости, достаточной вязкостью и пластичностью. Предел текучести углеродистых пружинных сталей после окончательной термической обработки должен превышать 800 Н/мм2, а легированных –1000 Н/мм2. Показатели пластичности должны быть δ≥5 % и ψ≥20%. Углеродистые стали для пружин и рессор имеют низкую коррозионную стойкость и невысокую релаксационную стойкость. Малая прокаливаемость этих сталей ограничивает их применение – обычно только для изготовления пружин и рессор небольшого сечения. Легированные стали обладают более высокими прочностными свойствами, повышенной вязкостью и сопротивлением хрупкому разрушению, более высокой релаксационной стойкостью, возможностями закалки в масле и даже на воздухе. Эти стали более предпочтительны для изготовления пружин и рессор. Механические свойства (минимальные) рессорно-пружинных сталей предусмотрены ГОСТ 14959-79. Это стали: 65, 70,75, 85, 65Г,65Г2, 70Г, 60С2,48,70СЗА, 50ХГ, 55КГР, 60ГСА, 50ХГФА и др. Режимы термической обработки: температура закалки в масле 820…870°С, температура отпуска 420…480°С.

    Марки стали

    Назначения

    Плоские пружины прямоугольного сечения толщиной 3…12 мм (сталь 65); пружины из проволоки диаметром 0,14…8 мм с холодной навивкой; пружины различных размеров с последующим отпуском при 300 °С (стали 70, 75 и 85); рессоры, пружины и бандажи локомотивов (сталь70)

    Плоские и круглые пружины, рессоры, пружинные кольца, шайбы, гровера и другие детали пружинного типа, от которых требуются высокие упругие свойства и повышенное сопротивление изнашиванию

    Рессоры толщиной 3…14 мм

    Рессоры, подвески, натяжные пружины; детали, рабо- тающие на переменный изгиб. Обычно применяют полосовую сталь толщиной 3…18 мм и желобчатую сталь (для рессор) толщиной 7…13 мм. Механические свойства ее в продольном и поперечном направлениях различны. Сталь склонна к обезуглероживанию

    Рессоры из полосовой стали толщиной. 3…16 мм;, пру-жины из полосовой стали толщиной 3…18 мм и из пру-жинной ленты толщиной 0,08…3 мм; витые пружины из проволоки диаметром 3…12 мм. Сталь склонна к обезуглероживанию, устойчива против роста зерна, обладает глубокой прокаливаемостью. Максимальная рабочая температура +250 °С

    Для изготовления рессорной полосы толщиной 3…16мм. Легирование бором повышает предел упругости и модуль упругости стали

    32.Износостойкие стали. Краткая характеристика . Марки

    Износостойкие стали применяются (используются) для изготовления деталей машин, работающих в условиях трения:

    Шарикоподшипниковые,

    Графитизированные,

    Высокомарганцовистые.

    Шарикоподшипниковые стали (ШХ15, ШХ20) применяют для изготовления шариков и роликов подшипников.

    По химическому составу (ГОСТ 801-78) и структуре эти стали относятся к классу инструментальных сталей.

    Графитизированную сталь (высокоуглеродистую, содержащую 1,5 - 2% С и до 2% Cr) используют для изготовления поршневых колец, поршней, коленчатых валов и других фасонных отливок, работающих в условиях трения.

    Графитизированная сталь содержит в структуре ферритоцементитную смесь и графит.

    Марки графитизированной стали У16 (ЭИ 336)

    Количество графита может значительно меняться в зависимости от режима термической обработки и содержания углерода.

    Графитизированная сталь после закалки сочетает свойства закаленной стали и серого чугуна.

    Графит в такой стали играет роль смазки.

    Высокомарганцовистую cталь Г13Л, содержащую 1,2% С и 13% Мn, применяют для изготовления железнодорожных крестовин, звеньев гусениц и т. п.

    Эта сталь обладает максимальной износостойкостью, когда имеет однофазную структуру аустенита, что обеспечивается закалкой (1000-1100°С) при охлаждении на воздухе.

    Закаленная сталь имеет низкую твердость (НВ 200), после сильного наклепа ее твердость повышается до НВ 600.

    Шарикоподшипниковые стали

    Стали для изготовления деталей подшипников (колец, шариков, роликов) считаются конструкционными, но по составу и свойствам относятся к инструментальным. Наибольшее применение имеет высокоуглеродистая хромистая сталь ШХ15. Заэвтектоидное содержание в ней углерода (0,95%) и хрома (1,3…1,65%) обеспечивает получение после закалки высокой равномерной твердости, устойчивости против истирания и достаточной вязкости. На качество стали и срок службы подшипника вредно влияют карбидные ликвации, полосчатость и сетка. На физическую однородность стали 50 вредно влияют неметаллические (сульфидные и оксидные) и газовые включения, макро- и микропористость. Сталь ШХ15 применяют для деталей небольших сечений. Для деталей более крупных подшипников в целях улучшения их прокаливаемости применяют хромокремнемарганцевые стали ШХ15СГ и ШХ20СГ.

    Для изготовления деталей крупногабаритных подшипников для прокатных станов, железнодорожного транспорта, работающих в тяжелых условиях при больших ударных нагрузках, применяют цементируемую сталь 20Х2Н4А.

    33. Коррозионно-стойкие (нержавеющие ) стали . Углеродистые и низколегированные стали подвержены коррозии, т. е. разрушаются от химического воздействия окружающей среды. По механизму протекания процесса различают два вида коррозии: химическую и электрохимическую. Явления, возникающие при электрохимической коррозии, аналогичны процессам в гальваническом элементе. Стали, устойчивые к электрохимической коррозии, называют коррозионно-стойкими (нержавеющими). Антикоррозионными свойствами сталь обладает в том случае, если она легирована большим количеством хрома или хрома и никеля.

    Хромистые коррозионно-стойкие стали . Содержание хрома в стали должно быть не менее 12%. При меньшем содержании хрома сталь не способно сопротивляться коррозии, так как ее электродный потенциал становится отрицательным. Широко применяют стали марок 12X13, 40X13, 12X17,08Х17Т.

    Хромоникелевые коррозионно-стойкие стали . Эти стали содержат большое количество хрома и никеля, мало углерода и относятся к аустенитному классу. Кроме аустенита в этих сталях находятся карбиды хрома. Для получения однофазной структуры аустенита сталь, например марки 12Х18Н9, закаливают в воде с температуры 1100…1150 °С. При этом достигается наиболее высокая коррозионная стойкость, но прочность сравнительно невысока. Для повышения прочности сталь подвергают пластической деформации в холодном состоянии.

    Хромоникелевые стали аустенитного класса имеют большую коррозионную стойкость, чем хромистые, и их широко применяют в химической, нефтяной и пищевой промышленности, автостроении, транспортном машиностроении, а также в строительстве.

    Жаропрочные стали и сплавы. К ним относят стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью. На уменьшение прочности стали влияет не только само повышение температуры, но и длительность действия приложенной нагрузки. В последнем случае под действием постоянной нагрузки сталь «ползет», поэтому данное явление названо ползучестью. Для углеродистых и легированных конструкционных сталей ползучесть наблюдается при температурах выше 350°С. Факторами, способствующими повышению жаропрочности, являются:

    высокая температура плавления основного металла; наличие в сплаве твердого раствора и мелкодисперсных частиц упрочняющей фазы; пластическая деформация, вызывающая наклеп; высокая температура рекристаллизации; рациональное легирование; термическая и термомеханическая обработка; введение в жаропрочные стали в долях процента таких элементов, как В, Се, Nb, Zn.

    Жаропрочные стали и сплавы классифицируют по основному признаку –температуре эксплуатации. Для работы при температурах до 350…400°С применяют обычные конструкционные стали (углеродистые и низколегированные). Для работы при температуре 400…550°С применяют легированные стали перлитного класса, например 15ХМ, 12Х11МФ. Для этих сталей основной характеристикой является предел ползучести, так как они предназначены главным образом для изготовления деталей котлов и турбин, напримертруб паропроводов и пароперегревателей, нагруженных сравнительно мало,но работающих весьма длительное время (до 100 000 ч). Эти стали содержат мало хрома и поэтому обладают невысокой жаростойкостью (до 550…600°С). Для работы при температуре 500…600°С применяют стали мартенситного класса: высокохромистые, например 15Х11МФ для лопаток паровых турбин; хромокремнистые (называемые сильхромами), например 40Х9С2 для клапанов мототоров; сложнолегированные, например 20Х12ВНМФ для дисков, роторов, валов, турбин. Для работы при температуре 600…750°С применяют стали аустенитного класса, разделяемые на неупрочняемые (нестареющие), например сталь 09Х14Н16В, предназначаемая для труб пароперегревателей и трубопроводов установок сверхвысокого давления, и упрочняемые (стареющие) сложнолегированные стали, например сталь 45Х4Н14В2М, применяемая для клапанов моторов, деталей трубопроводов, и сталь 40Х15Н7Г7Ф2МС для лопаток газовых турбин. Жаростойкость сталей аустенитного класса 800…850 °С. Для работы при 800…1100°С применяют жаропрочные сплавы на никелевой основе, например ХН77ТЮР, ХН55ВМТФКЮ для лопаток турбин. Эти сплавы стареющие и подвергаются такой же термической обработке (закалке и старению), как и стареющие стали аустенитного класса. Жаростойкость сплавов на никелевой основе до 1200°С.

    B зависимости от основной структуры, получаемой при охлаждении стали на воздухе после высокотемпературного нагрева, коррозионностойкие и жаропрочные стали делят на шесть классов. К мартенситному классу относятся стали с основной структурой мартенсита. Они содержат до 17% Cr и небольшие добавки вольфрама, молибдена, ванадия и никеля. Это стали 15X5, 20X13, 15ХМ, 20ХМ и др. К мартенситно-ферритному классу относятся стали, содержащие в структуре, помимо мартенсита, не менее 10 % феррита. Эти стали содержат 11…17% Cr и небольшое количество других элементов. Содержание углерода не превышает 0,15%. Их термическая обработка заключается в закалке с отпуском либо в нормализации с отпуском. Это стали 12X13,14Х17Н2, 15Х12ВНМФ, 18Х12ВМБФР. К ферритному классу относятся стали, имеющие структуру феррита. Они содержат малое количество углерода, до 30% Cr и небольшие добавки титана, ниобия и других элементов. Стали: 08X13, 12Х17Т, 15Х25Т, 15X28. К аустенитно-ферритному классу относятся стали, имеющие структуру аустенита и мартенсита, количество которых можно менять в широких пределах. Стали: 20Х13Н4Г9, 09Х15Н8Ю, 07Х16Н6, 09Х17Н7ЮЖ, 08Х17Н5М3. К аустенитно-ферритному классу относятся также стали, имеющие структуру аустенита и феррита (феррита более 10 %). Особую группу сталей аустенитного класса составляют экономно легированные никелем и безникелевые стали.

    «И перекуют мечи свои на орала, и копья свои — на серпы; не поднимет народ на народ меча, и не будут более учиться воевать» (Ис. 2,4).

    Характеристика материала сталь 65Г.

    Химический состав в % материала сталь 65Г

    C Si Mn Ni S P Cr Cu
    0.62 — 0.7 0.17 — 0.37 0.9 — 1.2 до 0.25 до 0.035 до 0.035 до 0.25 до 0.2

    Температура критических точек материала сталь 65Г

    T E 10 — 5 a 10 6 l r C R 10 9
    Град МПа 1/Град Вт/(м·град) кг/м 3 Дж/(кг·град) Ом·м
    20 2.15 37 7850
    100 2.13 11.8 36 7830 490
    200 2.07 12.6 35 7800 510
    300 2 13.2 34 525
    400 1.8 13.6 32 7730 560
    500 1.7 14.1 31 575
    600 1.54 14.6 30 590
    700 1.36 14.5 29 625
    800 1.28 11.8 28 705
    T E 10 — 5 a 10 6 l r C R 10 9

    Технологические свойства материала сталь 65Г

    Зарубежные аналоги материала сталь 65Г Внимание! Указаны как точные, так и ближайшие аналоги.

    66Mn4
    Ck67
    080A67
    65Mn

    Очень часто возникает вопрос, из какого материала выполнены клинки мастерской «Зброевы фальварак» . На данный момент у нас имеется две галереи, в которых хранятся образцы нашего клинкового оружия, выполненные из высокоуглеродистой стали:

    Какая же сталь, используется при изготовлении мечей? — В нашем случае — это сталь 65г . Данная сталь является разновидностью пружинно-рессорной стали, из нее производят: рессоры, пружины, упорные шайбы, тормозные ленты, фрикционные диски, шестерни, фланцы, корпусы подшипников, зажимные и подающие цанги и другие детали, к которым предъявляются требования повышенной износостойкости. Заменителями данной стали выступают: сталь 70, сталь У8А, сталь 70Г, сталь 60С2А, сталь 9Хс, 50ХФА, сталь 60С2, сталь 55С2.

    Основным лигирующим элементом данной стали является марганец , он содержится в количестве 0.90-1.20 %. Марганец в стали 65г предназначен:
    Во-первых , для устранения окислов железа, которые образуются при производстве литой стали — обыкновенно вводят в жидкий металл некоторое количество марганца, в виде зеркального чугуна или ферромангана. Часть марганца зеркального чугуна раскисляет окислы и переходит в шлак, часть же остается в стали в виде соединения с железом или просто как механическая примесь.
    Во-вторых марганец увеличивает твердость, повышает предел упругости и сопротивление разрыву, а кроме того уплотняет сталь, что для пружинно-рессорной стали имеет важное значение. Данные свойства имеют такое же значение для лезвия меча.
    Кроме марганца, в стале 65г в значительном количестве содержиться: кремний (0.17-0.37 %) и хром (не более 0.25 %) Кремний значительно повышает упругие свойства стали, но несколько снижает ударную вязкость. Хром в свою очередь, затрудняет рост зерна при нагреве, повышает механические свойства стали при статической и ударной нагрузке, повышает прокаливаемость и жаростойкость, режущие свойства и стойкость на истирание. При значительных количествах хрома сталь становится нержавеющей и жаростойкой. Так же в данной стали присутствуют и вредные вещества, такие как форфор и сера, данные примеси, отрицательно сказываются на качестве сталей, но в современном мире при производстве металла данные примеси стали постоянным сопутствующим элементом всех металлов. Благо, сталь 65г, содержит много марганца, который в значительной степени устраняет серу и форфор из стали.
    Конечно данная сталь не идеальна для меча, однако сталь 65Г, это сталь с повышенной прочностью, вязкостью и сопротивляемостью изнашиванию (при относительной дешевизне). Что и требуется для турнирного (ТУРНИРНОГО) оружия. А булатом и дамаском во все времена на турнирах не пользовались.
    Хочется отметить что износостойкость, вязкость и прочность, это тот особый комплекс условий которые нужны для хорошего клинка. В ходе дискуссий о лучших сталях для клинков – высказываются мнения о других вариантах (как правило для ножей). Указываются различные стали с прекрасными свойствами.
    Все стали, требуют правильной термической обработки , так зачастую более качественные стали не подходят для турнирного оружия из-за сложных требований термической обработки. Клинки из не правильно закалённой стали ломаются и крошатся. В то время, как процесс обработки стали 65г , отработан на многих производствах и досконально изучен термистами.
    Именно поэтому, мастерская “Зброевы фальварак” производит свои мечи из стали 65г, единственным отрицательным свойством которым обладает сталь 65г, является подверженность коррозии. Однако, это свойство исторично и является прямым отличием от современных порошковых имитаций оружия и нержавеющих ножевых сталей.
    Какие материалы могут быть использованы для производства клинков:

    Хочется отметить: чем меньше клинок, тем больше возможностей для вариаций марок стали, так как на малом клинке, различные технологические недостатки могут не иметь значения в отличии от меча.
    Например нож из ШХ15 , будет резать и рубить, но меч или длинный нож, может просто напросто “лопнуть”, сломаться из-за хрупкости данной стали.
    И так, сталь ШХ-15 (подшипниковая сталь) применима для клинков, однако требует очень качественной термической обработки, при нагрузках на изгибание может лопнуть, что особенно характерно для мечей из такой стали. Там где 65г погнется и выпрямится, шх-15 может сломаться. Кроме того, данная сталь является редкой и сложно технологичной.
    ШХ-15, пример от мастера-кузнеца с форума ostmetal.info: Сделал еще три клинка из ШХ15, поэкспериментировал еще с просто полосами — недоволен слишком, на мой взгляд, большой хрупкостью. Если на клинке из 65Г я могу повиснуть (а вешу я 82 кг) и еще ногами поболтать, при этом не остается никакой остаточной деформации, то полосу из ШХ15 толщиной 3мм можно в тисках сломать руками. Причем, прогибается ну только-только гадусов на 20-30.

    Сталь Р6М5 является неплохой сталью, например для ножа. Однако требует высокого качества термической обработки.
    Сталь Р6М5, пример от мастера-кузнеца с форума ostmetal.info: Р6М5 — очень даже неплохая сталь но её нужно грамотно отпустить и потом также грамотно закалить, главное не перекалить — будет хрупкая А также грамотно нагреть и грамотно отковать.
    Сталь Р6М5, пример от мастера-кузнеца с форума Ганза: Р6М5 со своими задачами справляются великолепно, но по твердой древесине заворачиваются. Ржавеют умеренно. Третий вариант ножа из стали Р6М5, решил сделать как есть. Т.е. кузнец отковал и отдал, я с ним ничего не делал, только обточил. Результат — он с трудом точится на брусках, хорошо на алмазе. С лимонными косточками справляется, но не так хорошо. Но вот заточку держит не так долго. По твердому дереву тоже хорош. Банки вскрывает. РК чуть-чуть подседает. Так вроде бы по ощущениям — нож близок к идеалу для туристических и охотничьих целей. Наверное, недостаток — остаточный аустенит, т.к. кузнец ест-но не проводил трехкратный отпуск.
    95х13, 95Х18, 110х18 (нержавейки) — довольно капризна при термообработке и не все производители умеют это качественно делать. 95Х18Ш была наиболее популярной сталью для производства ножей высокого класса в середине 90-х годов. Однако со временем выявился недостаток – лезвие практически не подлежит заточке… Сталь 110Х18 МШД имеет большее содержание углерода, больше износостойких по концентрации добавок (типа молибдена и кремния), можно произвести закалку до большей твердости, чем 95Х18Ш… и она лучше точиться, чем 95Х18Ш.
    65Х13 – прекрасна для ножей, требует правильной термической обработки.
    Х12, Х12М, Х12МФ, Х12Ф1 — доступные стали, не сильно подверженные коррозии, т.е. не ржавеющие при минимальном уходе за клинком. Очень хороши штамповые, а если их еще термоциклировать то выходят очень хорошие клинки. Однако ковать их трудно, особенно вручную, куется в относительно узком диапазоне, склонны к образованию трещин при ковке, при перегреве выше 950 ‘C может запросто рассыпаться под ударами…
    У8, У10,У12 – при правильной обработки получаются неплохие ножи.
    9ХС — хорошо куется и многое прощает в обработке, ржавеет.
    Сталь 65г, для изготовления ножей

    Отзывы1, охотники: марка 65Г — углеродистая сталь. Всё хорошо: заточку держит, но ржавеет
    Отзывы 2, охотники: у меня был нож 65Г самоделка 57 единиц не хрупкий и заточку держал. Хрупкость от неправильной термички.
    Из стали 65г, изготавливают ножи такие личности как: мастер-ножевик Титов , мастер-ножевик Иннокентий Татаринов , предприятия производители ножей: ООО ПП «Кизляр» , так со слов директора ООО ПП «Кизляр» Евгения Владимировича Орлова: Наше предприятие принято в Ассоциацию народных художественных промыслов России. А с 1996 года оно предлагает покупателю современное украшение: авторское оружие, выполненное лучшими российским мастерами на высочайшем художественном уровне. Взять, к примеру, клинки изделий. Они изготавливаются сегодня из коррозионно-стойких и высоколегированных сталей (65X13, 95X18, 110Х18МШ9 и 65Г). Так же, среди производителей ножей из стали 65г, можно отметить НОКС-Импекс . Ко-всему, можно добавить и нашу мастерскую. Так как именно из стали 65г, мы делаем наши кинжалы, ножи .
    Исходя из вышеперечисленных доводов, наша мастерская считает оправданным и верным изготовление мечей, сабель, шпаг, кинжалов из стали 65г, для целей исторической реконструкции. Отработанная технология производства меча, правильно подобранная сталь, являются залогом его длительного и приятного использования…

    Сталь 65г может поставляться на рынок в следующих вариантах.

    Сталь в виде листа:

    Сталь 65г от 0.5 мм. до 2 мм. — холоднокатаная , сталь 65г от 3 мм. и более — лист горячекатаный .

    1 3х1250х2500
    2 Лист конструкционный г/к Ст65Г 4х1500х6000
    3 Лист конструкционный г/к Ст65Г 5х1500х6000
    4 Лист конструкционный г/к Ст65Г 6х1500х6000 — ZF
    5 Лист конструкционный г/к Ст65Г 8х1500х6000
    6 Лист конструкционный г/к Ст65Г 10х1500х6000
    7 Лист конструкционный г/к Ст65Г 12х1500х6000
    8 Лист конструкционный г/к Ст65Г 14х1500х6000
    9 Лист конструкционный г/к Ст65Г 16х1500х6000
    10 Лист конструкционный г/к Ст65Г 20х1500х6000
    11 Лист конструкционный г/к Ст65Г 25х1500х6000
    12 Лист конструкционный г/к Ст65Г 30х1500х6000
    13 Лист конструкционный г/к Ст65Г 40х1500х6000
    14 Лист конструкционный г/к Ст65Г 50х1500х6000
    15 Лист конструкционный г/к Ст65Г 60х1500х6000

    Другим распространенным видам продукции компаний торгующих металлом 65г, является — круг . ГОСТ 14959-79; ДСТУ 4738:007 (ГОСТ 2590-2006).

    Наименование Марка стали Размер, мм
    Круг 65Г 10
    Круг 65Г 12
    Круг 65Г 14
    Круг 65Г 16
    Круг 65Г 18
    Круг 65Г 20
    Круг 65Г 22
    Круг 65Г 24
    Круг 65Г 26
    Круг 65Г 28
    Круг 65Г 30
    Круг 65Г 32
    Круг 65Г 34
    Круг 65Г 36
    Круг 65Г 38
    Круг 65Г 40
    Круг 65Г 42
    Круг 65Г 44
    Круг 65Г 46
    Круг 65Г 48
    Круг 65Г 50
    Круг 65Г 52
    Круг 65Г 54
    Круг 65Г 56
    Круг 65Г 58
    Круг 65Г 60
    Круг 65Г 62
    Круг 65Г 64
    Круг 65Г 65
    Круг 65Г 70

    Проволока 65г сталь, с данной проволокой успел поработать и я, когда изготавливал свою . Ее тяжело закручивать, резать и работать. Однако сделав изделия с подобной проволоки вы получите все преимущества того, что значит пружин-рессорный металл.

    Механические свойства пружинной проволоки:

    Диаметр проволоки 65г сталь, мм Временное сопротивление разрыву, Н/мм2 (кгс/мм2)
    Класс проволоки
    1 2 3
    Проволока 65г — 0.50 265-300 220-265 170-220
    Проволока 65г — 0.60 265-300 220-265 170-220
    Проволока 65г — 0.63 260-295 220-260 170-220
    Проволока 65г — 0.70 260-295 220-260 170-220
    Проволока 65г — 0.80 260-295 215-260 170-215
    Проволока 65г — 0.90 255-285 215-255 165-205
    Проволока 65г — 1.0 250-280 210-250 160-210
    Проволока 65г — 1.2 240-270 200-240 155-200
    Проволока 65г — 1.4 230-260 195-230 150-195
    Проволока 65г — 1.6 220-250 190-220 145-190
    Проволока 65г — 2.2 195-220 170-195 135-170
    Проволока 65г — 2.5 185-210 165-190 130-165
    Проволока 65г — 2.8 180-205 165-190 130-165
    Проволока 65г — 3.0 175-200 165-190 130-165
    Проволока 65г — 3.6 170-195 180-155 125-155
    Проволока 65г — 4.0 165-190 150-175 120-150
    Проволока 65г — 8.0 125-145 105-125

    Главное отличие данной разновидности металлопродукции от аналогов – увеличенный (причем значительно) предел текучести. Эта особенность пружинной стали дает возможность всем образцам, которые из нее изготовлены, восстанавливать свою форму после устранения причин, вызвавших деформацию. Разберемся с марками пружинной стали и спецификой и ее использования.

    ТУ на продукцию из пружинной стали, сортамент и ряд других параметров определены соответствующими ГОСТ. Для проката – № 14959 от 1979, для пружин – № 13764 от 1986 годов.

    Обозначение стали

    Оно довольно сложное, с некоторыми оговорками касательно отдельных ее марок. Например, по суммарной массе остаточных долей компонентов. Но в общем виде маркировка следующая:

    Позиции (слева направо)

    • Первая – масса углерода, выраженная сотыми долями процента (2 цифры).
    • Вторая – легирующий элемент (одна или несколько букв).
    • Третья – его доля, округленная до целого значения (цифры). Их отсутствие свидетельствует о том, то данный показатель не превышает 1,5%.

    Классификация сталей пружинных

    Марки и специфика применения пружинной стали

    50ХГ (ХГА) – рессоры, пружины всех видов транспорта, в том числе, ж/д.

    • 50ХГ ФА – для изделий особого назначения.
    • 50ХСА – в основном для часовых пружин.
    • 50ХФА – измерительные ленты; детали, подвергающиеся повышенному нагреву (до +300 ºС); конструктивные элементы, отвечающие высоким требованиям по усталостной прочности.

    51ХФА – то же, что и для аналога 50-й серии. Кроме того, изготовление пружинной проволоки сечением до 5,5 мм; лент и катанки.

    55С2 (С2А, С2ГФ) – рессоры, пружины и тому подобное.

    55ХГР – полосовая сталь для рессор от 3 до 24 мм толщиной.

    60Г – любые детали пружинного типа, которые должны соответствовать высоким требованиям по износостойкости и упругости.

    60С2 (С2А, С2Г, С2Н2А, С2ХА) – диски фрикционные, рессоры и пружины категории «высоконагруженные».

    60С2ФХА – аналогичные детали, материалом для изготовления которых является сталь крупная, калиброванная.

    65 – для деталей, испытывающих значительные вибрации и подвергающихся трению в процессе эксплуатации механизмов.

    • 65Г – для конструктивных элементов, не подвергающихся ударным нагрузкам, высокой износостойкости.
    • 65ГА – проволока, прошедшая термообработку (1,2 – 5,5 мм).
    • 65С2ВА – высоконагруженные детали (рессоры, пружины и так далее).

    68 (ГА) – аналогично 65ГА.

    70 (Г) – аналогично 60Г.

    • 70Г2 – то же; кроме того, часто используется при изготовлении ножей землеройных механизмов.
    • 70С2ХА (С3А) – см. 65С2ВА.
    • 70ФГФА – см. 65ГА.

    75, 80, 85 – пружины различной конфигурации (плоские, круглые), к которым предъявляются повышенные требования по основным параметрам – износостойкость, упругость, прочность.

    SL, SH, SM, ДН, ДМ – для пружинных изделий, которые эксплуатируются в условиях как статических, так и динамических нагрузок.

    КТ-2. Такая пружинная сталь используется в производстве холоднокатаной, из которой делают пружины без закалки, с холодной же навивкой.

    Автор обращает внимание, что приведенная информация – общего характера, так как использование подобных сталей не ограничивается лишь изготовлением рессор, фрикционных элементов и пружин. Спектр применения более широкий. Например, струны для фортепиано. Кроме того, эта сталь может быть не только в виде проволоки, но и в листовом исполнении. Для более детального ознакомления с данной продукцией следует обратиться к указанным ГОСТ.


    Если есть немного свободного времени и ненужная рессора от грузовика или другого автомобиля, то можно своими руками сделать достаточно красивый и уникальный нож. Возможно, с первого раза он не будет совсем идеальным, но главное – сделан своими руками. Главной прелестью этой самоделки является то, что нож может быть практически любой формы, необходимо просто включить немного фантазии.

    Материалы и инструменты для самоделки:
    болгарка;
    рессора от грузовика;
    надфиль;
    эпоксидная смола;
    льняное масло.


    Процесс изготовления ножа
    Материал для клинка можно достать на любом авторынке, иногда автомобили могут потерять рессору прямо посреди дороги. В данном случае используется рессора от Камаза. Можно взять и от другого автомобиля, в таком случае толщина клинка будет меньше, и ее ненужно будет уменьшать вручную.

    Шаг 1. Подготовка материала
    При помощи болгарки автор разрезал ее на три части, так как деталь имеет разную толщину и закругленную форму, необходимо выбрать оптимальную часть для данного типа ножа. Та часть рессоры, которая идеально подошла для клинка распиливается еще пополам, в итоге имеется две одинаковых заготовки.


    Шаг 2. Форма ножа
    Нужно взять заготовку и примерно разделить ее на две части пополам, из одной половины будет изготовлено само лезвие ножа, вторая половина будет входить внутрь ручки. Ту часть, которая будет находиться в ручке, необходимо немного обрезать с двух сторон, чтобы она стала меньше и могла поместиться в рукоятке.

    Так как рессора имеет толщину примерно в 8 мм, а таких ножей практически не бывает, то нужно наждаком длительное время убирать толщину до желаемой. Затем на станке нужно придать форму лезвия, желательно, чтобы был мелкозернистый камень, в противном случае, нож будет выглядеть шероховатым и немного не аккуратным.

















    Шаг 3. Создание рукояти
    Необходимо взять небольшой деревянный брусок (уделите особое внимание выбору дерева для рукояти) и выточить рукоять нужной формы, в данном случае нужно воспользоваться фантазией и представить, каким вы хотите видеть свой будущий нож. При помощи дрели и надфиля подготавливается место под ту часть клинка, которая должна находиться в рукояти. Для лучшего крепления можно воспользоваться эпоксидной смолой.
    Автор решил сделать ручку комбинированную, используя резину, бересту и березовый кап.






















    Отрезаем лишнее и шлифуем...






    После проведения всех процедур нужно обработать ручку. Понадобится льняное масло, подогретое на водяной бане до температуры 70-75 градусов. Нож при этом предварительно нужно спрятать в морозильную камеру на 30 – 40 минут. При соединении холодного ножа и теплого масла, по рукояти начинают бежать пузырьки, таким образом, воздух из дерева выходит, а это место заполняется льняным маслом. Такую процедуру нужно проделать несколько раз. После этого ручка ножа помещается в масло минимум на сутки.




    Шаг 4. Изготовление ножен
    Потребуется небольшой кусок кожи, по форме ножа нужно сделать выкройку. При помощи шила делаются отверстия (так как кожа весьма жесткий материал), а потом части сшиваются обычной крепкой ниткой.
    Похожие статьи

    © 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.