Термический потенциал. Термодинамические потенциалы

Лекция 14.

Основное неравенство и основное уравнение термодинамики. Понятие о термодинамических потенциалах. Эффект Джоуля-Томпсона. Принцип Ле-Шателье-Брауна. Введение в термодинамику необратимых процессов.

Основное неравенство и основное уравнение термодинамики

Для энтропии выполняется соотношение . Используя первое начало термодинамики, получаем основное неравенство термодинамики:

.

Знак равенства соответствует равновесным процессам . Основное уравнение равновесных (обратимых) процессов:

.

Метод термодинамических потенциалов.

Применение законов термодинамики даёт возможность описывать многие свойства макросистем. Для такого описания исторически сложились два пути: метод циклов и метод термодинамических функций. Первый основан на анализе обратимых циклов, а второй – на применении термодинамических функций (потенциалов), введённых Гиббсом.

Исходным для вывода всех термодинамических потенциалов является основное уравнение термодинамики:

,

связывающее между собой пять величин (T , S , U , p , V ), которые могут быть параметрами состояния или рассматриваться как функции состояния системы.

Для определения состояния простейшей термодинамической системы достаточно задать значения двух независимых параметров. Поэтому для нахождения значений остальных трех параметров необходимо определить ещё три уравнения, одним из которых является основное уравнение термодинамики, а остальные два могут быть, например, уравнением состояния и дополнительным уравнением, вытекающим из свойств конкретного состояния системы:

;
;
.

В общем случае к термодинамическим потенциалам может относиться любая функция состояния (например, внутренняя энергия или энтропия), если она определена как независимая функция параметров состояния. Поэтому число термодинамических функций очень велико. Обычно рассматривают те, которые обладают следующим свойством: частные производные функции по соответствующим параметрам равны тому или иному параметру состояния системы.

Термодинамические потенциалы ( термодинамические функции ) это определённые функции объёма, давления, температуры, энтропии, числа частиц системы и других макроскопических параметров, характеризующих состояние системы, обладающие следующим свойством: если известен термодинамический потенциал, то путём его дифференцирования по отмеченным выше параметрам можно получить все другие параметры, определяющие состояние системы.

Примеры термодинамических потенциалов.

1) V и энтропию S . Тогда из основного уравнения термодинамики вытекает:
. Откуда находим
,
. Следовательно, внутренняя энергия
- потенциал.

Смысл внутренней энергии как потенциала : при V=const получаем:
, т.е. изменение внутренней энергии равно количеству теплоты, подведённой к системе при изохорном процессе.

Если процесс необратимый, то
или
.

2) Выберем в качестве независимых параметров давление p и энтропию S .

С учетом равенства
и основного уравнения термодинамики:
, получаем, что из соотношения: следует:
. А теперь введём обозначение:
. Тогда
и
,
. Значит, функция
является термодинамическим потенциалом и носит название: энтальпия.

Смысл энтальпии как термодинамического потенциала : при p =const получаем, что
, т.е. изменение энтальпии равно подведённому количеству теплоты при изобарном процессе.

Если процесс необратимый, то
или ,
.

3) Выберем в качестве независимых параметров объём V и температуру T .

Перепишем основное уравнение термодинамики
в виде:
и с учётом равенства
получаем: или . Теперь вводим обозначение:
, тогда
,
,
. Таким образом, функция
- термодинамический потенциал, который называется свободной энергией или термодинамическим потенциалом Гельмгольца.

Смысл свободной энергии как термодинамического потенциала : при T=const получаем: , т.е. уменьшение свободной энергии равно работе, совершённой системой в изотермическом процессе.

Если процесс необратимый, то
или , т.е.

.

При необратимом изотермическом и изохорном процессе
- свободная энергия уменьшается до тех пор, пока система не придет в термодинамическое равновесие – в этом случае свободная энергия принимает минимальное значение.

Термодинами́ческие потенциа́лы (термодинамические функции ) - характеристические функции в термодинамике , убыль которых в равновесных процессах, протекающих при постоянстве значений соответствующих независимых параметров, равна полезной внешней работе.

Поскольку в изотермическом процессе количество теплоты, полученное системой, равно , то убыль свободной энергии в квазистатическом изотермическом процессе равна работе, совершённой системой над внешними телами.

Потенциал Гиббса

Также называемый энергией Гиббса , термодинамическим потенциалом , свободной энергией Гиббса и даже просто свободной энергией (что может привести к смешиванию потенциала Гиббса со свободной энергией Гельмгольца):

.

Термодинамические потенциалы и максимальная работа

Внутренняя энергия представляет собой полную энергию системы. Однако второе начало термодинамики запрещает превратить всю внутреннюю энергию в работу.

Можно показать, что максимальная полная работа (как над средой, так и над внешними телами), которая может быть получена от системы в изотермическом процессе , равна убыли свободной энергии Гельмгольца в этом процессе:

,

где - свободная энергия Гельмгольца.

В этом смысле представляет собой свободную энергию, допускающую преобразование в работу. Оставшаяся часть внутренней энергии может быть названа связанной .

В некоторых приложениях приходится различать полную и полезную работу. Последняя представляет собой работу системы над внешними телами, исключая среду, в которую она погружена. Максимальная полезная работа системы равна

где - энергия Гиббса.

В этом смысле энергия Гиббса также является свободной .

Каноническое уравнение состояния

Задание термодинамического потенциала некоторой системы в определенной форме эквивалентно заданию уравнения состояния этой системы.

Соответствующие дифференциалы термодинамических потенциалов:

  • для внутренней энергии
,
  • для энтальпии
,
  • для свободной энергии Гельмгольца
,
  • для потенциала Гиббса
.

Эти выражения математически можно рассматривать как полные дифференциалы функций двух соответствующих независимых переменных. Поэтому естественно рассматривать термодинамические потенциалы как функции:

, , , .

Задание любой из этих четырёх зависимостей - то есть конкретизация вида функций , , , - позволяет получить всю информацию о свойствах системы. Так, например, если нам задана внутренняя энергия как функция энтропии и объёма , оставшиеся параметры могут быть получены дифференцированием:

Здесь индексы и означают постоянство второй переменной, от которой зависит функция. Эти равенства становятся очевидными, если учесть, что .

Задание одного из термодинамических потенциалов как функции соответствующих переменных, как записано выше, представляет собой каноническое уравнение состояния системы. Как и другие уравнения состояния, оно справедливо лишь для состояний термодинамического равновесия . В неравновесных состояниях эти зависимости могут не выполняться.

Метод термодинамических потенциалов. Соотношения Максвелла

Метод термодинамических потенциалов помогает преобразовывать выражения, в которые входят основные термодинамические переменные и тем самым выражать такие «труднонаблюдаемые» величины, как количество теплоты, энтропию, внутреннюю энергию через измеряемые величины - температуру, давление и объём и их производные.

Рассмотрим опять выражение для полного дифференциала внутренней энергии:

.

Известно, что если смешанные производные существуют и непрерывны, то они не зависят от порядка дифференцирования, то есть

.

Но и , поэтому

.

Рассматривая выражения для других дифференциалов, получаем:

, , .

Эти соотношения называются соотношениями Максвелла . Заметим, что они не выполняются в случае разрывности смешанных производных, что имеет место при фазовых переходах 1-го и 2-го рода.

Системы с переменным числом частиц. Большой термодинамический потенциал

Химический потенциал () компонента определяется как энергия, которую необходимо затратить для того, чтобы добавить в систему бесконечно малое молярное количество этого компонента. Тогда выражения для дифференциалов термодинамических потенциалов могут быть записаны так:

, , , .

Поскольку термодинамические потенциалы должны быть аддитивными функциями числа частиц в системе, канонические уравнения состояния принимают такой вид (с учётом того, что S и V - аддитивные величины, а T и P - нет):

, , , .

И, поскольку , из последнего выражения следует, что

,

то есть химический потенциал - это удельный потенциал Гиббса (на одну частицу).

Для большого канонического ансамбля (то есть для статистического ансамбля состояний системы с переменным числом частиц и равновесным химическим потенциалом) может быть определён большой термодинамический потенциал , связывающий свободную энергию с химическим потенциалом:

;

Нетрудно проверить, что так называемая связанная энергия является термодинамическим потенциалом для системы, заданной с постоянными .

Лекция на тему:”Термодинамические потенциалы”

План:

    Группа потенциалов “E F G H ”, имеющих размерность энергии.

    Зависимость термодинамических потенциалов от числа частиц. Энтропия как термодинамический потенциал.

    Термодинамические потенциалы многокомпонентных систем.

    Практическая реализация метода термодинамических потенциалов (на примере задачи химического равновесия).

Один из основных методов современной термодинамики является метод термодинамических потенциалов. Этот метод возник, во многом, благодаря использованию потенциалов в классической механике, где его изменение связывалось с производимой работой, а сам потенциал является энергетической характеристикой термодинамической системы. Исторически сложилось так, что введенные первоначально термодинамические потенциалы также имели размерность энергии, что и определило их название.

Упомянутая группа включает следующие системы:

Внутренняя энергия;

Свободная энергия или потенциал Гельмгольца ;

Термодинамический потенциал Гиббса ;

Энтальпия .

Потенциальность внутренней энергии была показано в предыдущей теме. Из нее следует потенциальность остальных величин.

Дифференциалы термодинамических потенциалов принимает вид:

Из соотношений (3.1) видно, что соответствующие термодинамические потенциалы характеризуют одну и ту же термодинамическую систему при различных способах …. описания (способах задания состояния термодинамической системы). Так, для адиабатически изолированной системы, описываемой в переменных удобно в качестве термодинамического потенциала использовать внутреннюю энергию.Тогда параметры системы, термодинамически сопряженные к потенциалам, определяются из соотношений:

, , , (3.2)

Если в качестве способа описания используется “система в термостате”, задаваемая переменными , наиболее удобно использовать в качестве потенциала свободную энергию . Соответственно, для параметров системы получим:

, , , (3.3)

Далее, выберем в качестве способа описания модель “системы под поршнем”. В этих случаях функции состояния образуют набор (), а в качестве термодинамического потенциала используется потенциал Гиббса G . Тогда параметры системы определяются из выражений:

, , , (3.4)

И в случае “адиабатической системы над поршнем”, заданной функциями состояния роль термодинамического потенциала играет энтальпия H . Тогда параметры системы принимают вид:

, , , (3.5)

Из того, что соотношения (3.1) задают полные дифференциалы термодинамических потенциалов, мы можем приравнивать их вторые производные.

Например, Учитывая, что

получаем

(3.6а)

Аналогично для остальных параметров системы, связанных с термодинамическим потенциалом , запишем:

(3.6б-е)

Подобные тождества можно записать и для других наборов параметров термодинамического состояния системы на основе потенциальности соответствующих термодинамических функций .

Так, для “системы в термостате” c потенциалом , имеем:

Для системы “над поршнем” с потенциалом Гиббса будут справедливы равенства:

И, наконец, для системы с адиабатическим поршнем с потенциалом H , получим:

Равенства вида (3.6) – (3.9) получили название термодинамических тождеств и в ряде случаев оказываются удобными для практических расчетов.

Использование термодинамических потенциалов позволяет достаточно просто определить работу системы и тепловой эффект .

Так, из соотношений (3.1) следует:

Из первой части равенства следует известное положение о том, что работа теплоизолированной системы () производится за счет убыли ее внутренней энергии. Второе равенство означает, что свободная энергия есть та часть внутренней энергии , которая при изотермическом процессе целиком переходит в работу (соответственно “оставшуюся” часть внутренней энергии иногда называют связанной энергией).

Количество теплоты можно представить в виде:

Из последнего равенства понятно, почему энтальпию еще называют теплосодержанием. При горении и других химических реакциях, происходящих при постоянном давлении (), выделяемое количество теплоты равно изменению энтальпии.

Выражение (3.11), с учетом второго начала термодинамики (2.7) позволяет определить теплоемкость:

Все термодинамические потенциалы типа энергии обладают свойством аддитивности. Поэтому можно записать:

Легко видеть, что потенциал Гиббса содержит только один аддитивный параметр , т.е. удельный потенциал Гиббса от не зависит. Тогда из (3.4) следует:

(3.14) параметрами газа (Т, Р, V) ... система нейтральный молекулярный газ с высоким потенциалом ионизации + свободные электроны, эмиттированные частицами...

  • Термодинамические основы термоупругости

    Курсовая работа >> Физика

    И термоупругости ввел обобщенные комплексные потенциалы термоупругости, позволившие решить различные задачи... Козионов В.А., Испулов Н.А., Баяубаев Е.К. Сейтханова А.К. Динамические и термодинамические процессы в скальных грунтах и строительных конструкциях...

  • Термодинамические характеристики (H,S,G) и возможность самопроизвольного протекания процесса

    Курсовая работа >> Химия

    Университет Кафедра химии Курсовая работа "Термодинамические характеристики (H,S,G) и возможность самопроизвольного...). Найти потенциалы окислителя и восстановителя указать направления протекания процесса. Определить термодинамические характеристики...

  • Термодинамические характеристики участков реакции

    Контрольная работа >> Химия

    CaCO4 = CaO + CO2 Стандартные термодинамические характеристики участков реакции: кДж ∆ ... элемента разности электродных потенциалов катода и анода. ... с более положительным электродным потенциалом , а анодом – электрод с более отрицательным потенциалом . ЭДС = Е...

  • Все расчеты в термодинамике основываются на использовании функций состояния, называемых термодинамическими потенциалами. Каждому набору независимых параметров соответствует свой термодинамический потенциал. Изменения потенциалов, происходящие в ходе каких-либо процессов, определяют либо совершаемую систолой работу, либо получаемое системой тепло.

    При рассмотрении термодинамических потенциалов мы будем пользоваться соотношением (103.22), представив его в виде

    Знак равенства относится к обратимым, знак неравенства - к нет обратимым процессам.

    Термодинамические потенциалы являются функциями состояния. Поэтому приращение любого из потенциалов равно полному дифференциалу функции, которой он выражается. Полный дифференциал функции переменных и у определяется выражением

    Поэтому, если в ходе преобразований мы получим для приращения некоторой величины выражение вида

    можно утверждать, что эта величина является функцией параметров , причем функции представляют собой частные производные функции

    Внутренняя энергия. С одним из термодинамических потенциалов мы уже хорошо знакомы. Это - внутренняя энергия системы. Выражение первого начала для обратимого процесса можно представить в виде

    (109.4)

    Сравнение с (109.2) показывает, что в качестве так называемых, естественных переменных для потенциала V выступают переменные S и V. Из (109.3) следует, что

    Из соотношения следует, что в случае, - когда тело не обменивается теплом с внешней средой, совершаемая им работа равна

    или в интегральной форме:

    Таким образом, при отсутствии теплообмена с внешней средой работа равна убыли внутренней энергии тела.

    При, постоянном объеме

    Следовательно, - теплоемкость при постоянном объеме равна

    (109.8)

    Свободная знергия. Согласно (109.4) работа производимая теплом при обратимом изотермическом процессе, может быть представлена в виде

    Функцию состояния

    (109.10)

    называются свободной энергией тела.

    В соответствии с формулам» (109.9) и (109.10) при обратимом изотермическом процессе работа равна убыли свободной энергии тела:

    Сравнение с формулой (109.6) показывает, что при изотермических процессах свободная энергия играет такую же роль, как внутренняя энергия при адиабатических процессах.

    Заметам, что формула (109.6) справедлива как при обратимых, так и при необратимых процессах. Формула же (109.12) справедлива только для обратимых процессов. При необратимых процессах (см. ). Подставив это неравенство в соотношение легко получить, что при необратимых изотермических процессах

    Следовательно, убыль свободной энергии определяет верхний предел количества работы, которую может совершить система при изотермическом процессе.

    Возьмем дифференциал от функции (109.10). Приняв во внимание (109.4) получим:

    Из сравнения с (109.2) заключаем, что естественными переменными для свободной энергии являются Т и V. В соответствии с (109.3)

    Заменим: в (109.1) dQ через и разделим получившееся соотношение на ( - время). В результате получим, что

    Если температура и объем остаются постоянными, то соотношение (109.16) может быть преобразовано к виду

    Из этой формулы следует, что необратимый процесс, протекающий при постоянных температуре и объема, сопровождается уменьшением свободной энергии тела. По достижении равновесия F перестает меняться со временем. Таким образом; при неизменных Т и V равновесным является состояние, для которого свободная энергия минимальна.

    Энтальпия. Если процесс «происходит при постоянном давлении, то количество получаемого телом тепла можно представить следующим образом:

    Функцию состояния

    называют энтальпией или тепловой функцией.

    Из (109.18) и (109.19) вытекает, что количество тепла, получаемого телом в ходе изобатического процесса, равно

    или в интегральной форме

    Следовательно, в случае, когда давление остается постоянным, количество получаемого телом тепла равно приращению энтальпии. Дифференцирование выражения (109.19) с учетом (109.4) дает

    Отсюда заключаем. энтальпия есть термодинамический потенциал в переменных Его частные производные равны

    термодинамические потенциалы, термодинамические потенциалы элементов

    Термодинами́ческие потенциа́лы - внутренняя энергия, рассматриваемая как функция энтропии и обобщённых координат (объёма системы, площади поверхности раздела фаз, длины упругого стержня или пружины, поляризации диэлектрика, намагниченности магнетика, масс компонентов системы и др.), и термодинамические характеристические функции, получаемые посредством применения преобразования Лежандра к внутренней энергии

    .

    Цель введения термодинамических потенциалов - использование такого набора естественных независимых переменных, описывающих состояние термодинамической системы, который наиболее удобен в конкретной ситуации, с сохранением тех преимуществ, которые даёт применение характеристических функций с размерностью энергии. частности, убыль термодинамических потенциалов в равновесных процессах, протекающих при постоянстве значений соответствующих естественных переменных, равна полезной внешней работе.

    Термодинамические потенциалы были введены У. Гиббсом, говорившим о «фундаментальных уравнениях (fundamental equations)»; термин термодинамический потенциал принадлежит Пьеру Дюгему.

    Выделяют следующие термодинамические потенциалы:

    • внутренняя энергия
    • энтальпия
    • свободная энергия Гельмгольца
    • потенциал Гиббса
    • большой термодинамический потенциал
    • 1 Определения (для систем с постоянным числом частиц)
      • 1.1 Внутренняя энергия
      • 1.2 Энтальпия
      • 1.3 Свободная энергия Гельмгольца
      • 1.4 Потенциал Гиббса
    • 2 Термодинамические потенциалы и максимальная работа
    • 3 Каноническое уравнение состояния
    • 4 Переход от одних термодинамических потенциалов к другим. Формулы Гиббса - Гельмгольца
    • 5 Метод термодинамических потенциалов. Соотношения Максвелла
    • 6 Системы с переменным числом частиц. Большой термодинамический потенциал
    • 7 Потенциалы и термодинамическое равновесие
    • 8 Примечания
    • 9 Литература

    Определения (для систем с постоянным числом частиц)

    Внутренняя энергия

    Определяется в соответствии с первым началом термодинамики, как разность между количеством теплоты, сообщенным системе, и работой, совершенной системой над внешними телами:

    .

    Энтальпия

    Определяется следующим образом:

    ,

    где - давление, а - объём.

    Поскольку в изобарном процессе работа равна, приращение энтальпии в квазистатическом изобарном процессе равно количеству теплоты, полученному системой.

    Свободная энергия Гельмгольца

    Также часто называемый просто свободной энергией . Определяется следующим образом:

    ,

    где - температура и - энтропия.

    Поскольку в изотермическом процессе количество теплоты, полученное системой, равно, то убыль свободной энергии в квазистатическом изотермическом процессе равна работе, совершённой системой над внешними телами.

    Потенциал Гиббса

    Также называемый энергией Гиббса , термодинамическим потенциалом , свободной энергией Гиббса и даже просто свободной энергией (что может привести к смешиванию потенциала Гиббса со свободной энергией Гельмгольца):

    .

    Термодинамические потенциалы и максимальная работа

    Внутренняя энергия представляет собой полную энергию системы. Однако второе начало термодинамики запрещает превратить всю внутреннюю энергию в работу.

    Можно показать, что максимальная полная работа (как над средой, так и над внешними телами), которая может быть получена от системы в изотермическом процессе, равна убыли свободной энергии Гельмгольца в этом процессе:

    ,

    где - свободная энергия Гельмгольца.

    В этом смысле представляет собой свободную энергию, допускающую преобразование в работу. Оставшаяся часть внутренней энергии может быть названа связанной.

    В некоторых приложениях приходится различать полную и полезную работу. Последняя представляет собой работу системы над внешними телами, исключая среду, в которую она погружена. Максимальная полезная работа системы равна

    где - энергия Гиббса.

    В этом смысле энергия Гиббса также является свободной.

    Каноническое уравнение состояния

    Задание термодинамического потенциала некоторой системы в определенной форме эквивалентно заданию уравнения состояния этой системы.

    Соответствующие дифференциалы термодинамических потенциалов:

    • для внутренней энергии
    ,
    • для энтальпии
    ,
    • для свободной энергии Гельмгольца
    ,
    • для потенциала Гиббса
    .

    Эти выражения математически можно рассматривать как полные дифференциалы функций двух соответствующих независимых переменных. Поэтому естественно рассматривать термодинамические потенциалы как функции:

    , .

    Задание любой из этих четырёх зависимостей - то есть конкретизация вида функций, - позволяет получить всю информацию о свойствах системы. Так, например, если нам задана внутренняя энергия как функция энтропии и объёма, оставшиеся параметры могут быть получены дифференцированием:

    Здесь индексы и означают постоянство второй переменной, от которой зависит функция. Эти равенства становятся очевидными, если учесть, что.

    Задание одного из термодинамических потенциалов как функции соответствующих переменных, как записано выше, представляет собой каноническое уравнение состояния системы. Как и другие уравнения состояния, оно справедливо лишь для состояний термодинамического равновесия. неравновесных состояниях эти зависимости могут не выполняться.

    Переход от одних термодинамических потенциалов к другим. Формулы Гиббса - Гельмгольца

    Значения всех термодинамических потенциалов в определённых переменных могут быть выражены через потенциал, дифференциал которого является полным в этих переменных. К примеру, для простых систем в переменных, термодинамические потенциалы можно выразить через свободную энергию Гельмгольца:

    Первая из этих формул называется формулой Гиббса - Гельмгольца, но иногда этот термин применяют ко ко всем подобным формулам, в которых температура является единственной независимой переменной.

    Метод термодинамических потенциалов. Соотношения Максвелла

    Метод термодинамических потенциалов помогает преобразовывать выражения, в которые входят основные термодинамические переменные и тем самым выражать такие «труднонаблюдаемые» величины, как количество теплоты, энтропию, внутреннюю энергию через измеряемые величины - температуру, давление и объём и их производные.

    Рассмотрим опять выражение для полного дифференциала внутренней энергии:

    .

    Известно, что если смешанные производные существуют и непрерывны, то они не зависят от порядка дифференцирования, то есть

    .

    Но и, поэтому

    .

    Рассматривая выражения для других дифференциалов, получаем:

    , .

    Эти соотношения называются соотношениями Максвелла. Заметим, что они не выполняются в случае разрывности смешанных производных, что имеет место при фазовых переходах 1-го и 2-го рода.

    Системы с переменным числом частиц. Большой термодинамический потенциал

    Химический потенциал () компонента определяется как энергия, которую необходимо затратить для того, чтобы добавить в систему бесконечно малое молярное количество этого компонента. Тогда выражения для дифференциалов термодинамических потенциалов могут быть записаны так:

    , .

    Поскольку термодинамические потенциалы должны быть аддитивными функциями числа частиц в системе, канонические уравнения состояния принимают такой вид (с учётом того, что S и V - аддитивные величины, а T и P - нет):

    , .

    И, поскольку, из последнего выражения следует, что

    ,

    то есть химический потенциал - это удельный потенциал Гиббса (на одну частицу).

    Для большого канонического ансамбля (то есть для статистического ансамбля состояний системы с переменным числом частиц и равновесным химическим потенциалом) может быть определён большой термодинамический потенциал, связывающий свободную энергию с химическим потенциалом:

    ;

    Нетрудно проверить, что так называемая связанная энергия является термодинамическим потенциалом для системы, заданной с постоянными.

    Потенциалы и термодинамическое равновесие

    В состоянии равновесия зависимость термодинамических потенциалов от соответствующих переменных определяется каноническим уравнением состояния этой системы. Однако в состояниях, отличных от равновесного, эти соотношения теряют силу. Тем не менее, для неравновесных состояний термодинамические потенциалы также существуют.

    Таким образом, при фиксированных значениях своих переменных потенциал может принимать различные значения, одно из которых соответствует состоянию термодинамического равновесия.

    Можно показать, что в состоянии термодинамического равновесия соответствующее значение потенциала минимально. Поэтому равновесие является устойчивым.

    Нижеприведённая таблица показывает, минимуму какого потенциала соответствует состояние устойчивого равновесия системы с заданными фиксированными параметрами.

    Примечания

    1. Кричевский И. Р., Понятия и основы термодинамики, 1970, с. 226–227.
    2. Сычев В. В., Сложные термодинамические системы, 1970.
    3. Кубо Р., Термодинамика, 1970, с. 146.
    4. Мюнстер А., Химическая термодинамика, 1971, с. 85–89.
    5. Gibbs J. W., The Collected Works, Vol. 1, 1928.
    6. Гиббс Дж. В., Термодинамика. Статистическая механика, 1982.
    7. Duhem P., Le potentiel thermodynamique, 1886.
    8. Гухман А. А., Об основаниях термодинамики, 2010, с. 93.

    Литература

    • Duhem P. Le potentiel thermodynamique et ses applications à la mécanique chimique et à l"étude des phénomènes électriques. - Paris: A. Hermann, 1886. - XI + 247 с.
    • Gibbs J. Willard. The Collected Works. - N. Y. - London - Toronto: Longmans, Green and Co., 1928. - Т. 1. - XXVIII + 434 с.
    • Базаров И. П. Термодинамика. - М.: Высшая школа, 1991. 376 с.
    • Базаров И. П. Заблуждения и ошибки в термодинамике. Изд. 2-е испр. - М.: Едиториал УРСС, 2003. 120 с.
    • Гиббс Дж. В. Термодинамика. Статистическая механика. - М.: Наука, 1982. - 584 с. - (Классики науки).
    • Гухман А. А. Об основаниях термодинамики. - 2-е изд., испр. - М.: Изд-во ЛКИ, 2010. - 384 с. - ISBN 978-5-382-01105-9.
    • Зубарев Д.Н. Неравновесная статистическая термодинамика. М.: Наука, 1971. 416 с.
    • Квасников И. А. Термодинамика и статистическая физика. Теория равновесных систем, том. 1. - М.: Изд-во МГУ, 1991. (2-е изд., испр. и доп. М.: УРСС, 2002. 240 с.)
    • Кричевский И. Р. Понятия и основы термодинамики. - 2-е изд., пересмотр. и доп. - М.: Химия, 1970. - 440 с.
    • Кубо Р. Термодинамика. - М.: Мир, 1970. - 304 с.
    • Ландау, Л. Д., Лифшиц, Е. М. Статистическая физика. Часть 1. - Издание 3-е, дополненное. - М.: Наука, 1976. - 584 с. - («Теоретическая физика», том V).
    • Майер Дж., Гепперт-Майер М. Статистическая механика. М.: Мир, 1980.
    • Мюнстер А. Химическая термодинамика. - М.: Мир, 1971. - 296 с.
    • Сивухин Д. В. Общий курс физики. - М.: Наука, 1975. - Т. II. Термодинамика и молекулярная физика. - 519 с.
    • Сычев В. В. Сложные термодинамические системы. - 4-е изд., перераб. и доп.. - М: Энергоатомиздат, 1986. - 208 с.
    • Термодинамика. Основные понятия. Терминология. Буквенные обозначения величин. Сборник определений, вып. 103/ Комитет научно-технической терминологии АН СССР. М.: Наука, 1984

    термодинамические потенциалы, термодинамические потенциалы элементов, термодинамические потенциалын

    Похожие статьи

    © 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.