К физическим методам анализа относятся. Реферат: Аналитическая химия

ФИЗИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

основаны на измерении эффекта, вызванного взаимод. с в-вом излучения - потока квантов или частиц. Излучение играет примерно ту же роль, что играет реактив в химических методах анализа. Измеряемый физ. эффект представляет собой сигнал. В результате неск. или мн. измерений величины сигнала и их стати-стич. обработки получают аналит. сигнал. Он связан с концентрацией или массой определяемых компонентов.

Исходя из характера используемого излучения, Ф. м. а. можно разделить на три группы: 1) методы, использующие первичное излучение, поглощаемое образцом; 2) применяющие первичное излучение, рассеиваемое образцом; 3) использующие вторичное излучение, испускаемое образцом. К примеру, масс-спектрометрия относится к третьей группе -первичным излучением здесь служит поток электронов, квантов света, первичных ионов или др. частиц, а вторичное излучение представляет собой разл. масс и зарядов.

С точки зрения практич. применения чаще используют др. классификацию Ф. м. а.: 1) спектроскопич. методы анализа -атомно-эмиссионная, атомно-абсорбционная, атомно-флуо-ресцентная спектрометрия и др. (см., напр., Атомно-абсорб-ционный анализ, Атомно-флуоресцентный анализ, Инфракрасная , Ультрафиолетовая спектроскопия), в т. ч. рентгено-флуоресцент-ный метод и рентгеноспектральный микроанализ, масс-спектрометрия, электронный парамагнитный резонанс и ядерный магнитный резонанс, электронная спектрометрия; 2) ядер-но-физ. и радиохим. методы - (см. Активационный анализ), ядерная гамма-резонансная, или мёссбауэровская спектроскопия, изотопного разбавления метод", 3) прочие методы, напр. рентгеновская дифрактометрия (см. Дифракционные методы), и др.

Достоинства физ. методов: простота пробоподготовки (в большинстве случаев) и качественного анализа проб, большая универсальность по сравнению с хим. и физ.-хим. методами (в т. ч. возможность анализа многокомпонентных смесей), широкий динамич. диапазон (т. е. возможность определения основных, примесных и следовых составляющих), часто низкие пределы обнаружения как по концентрации (до 10 -8 % без использования концентрирования), так и по массе (10 -10 -10 -20 г), что позволяет расходовать предельно малые кол-ва пробы, а иногда проводить . Многие Ф. м. а. позволяют выполнять как валовый, так и локальный и послойный анализ с пространств. разрешением вплоть до моноатомного уровня. Ф. м. а. удобны для автоматизации.

Использование достижений физики в аналит. химии приводит к созданию новых методов анализа. Так, в кон. 80-х гг. появились масс-спектрометрия с индуктивно связанной плазмой, ядерный микрозонд (метод, основанный на регистрации рентгеновского излучения, возбужденного при бомбардировке исследуемого образца пучком ускоренных ионов, обычно протонов). Расширяются области применения Ф. м. а. природных объектов и техн. материалов. Новый толчок их развитию даст переход от разработки теоретич. основ отдельных методов к созданию общей теории Ф. м. а. Цель таких исследований - выявление физ. факторов, обеспечивающих все связи в процессе анализа. Нахождение точной взаимосвязи аналит. сигнала с содержанием определяемого компонента открывает путь к созданию "абсолютных" методов анализа, не требующих образцов сравнения. Создание общей теории облегчит сопоставление Ф. м. а. между собой, правильный выбор метода для решения конкретных аналит. задач, оптимизацию условий анализа.

Лит.: Данцер К., Тан Э., Moльх Д., Аналитика. Систематический обзор, пер. с нем., M., 1981; Юинг Г., Инструментальные методы химического анализа, пер. с англ., M., 1989; Рамендик Г. И., Шишов В. В., "Ж. аналит. химии", 1990, т. 45, № 2, с. 237-48; Золотев Ю. А., Аналитическая химия: проблемы и достижения, M., 1992. Г. И. Рамендик.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ФИЗИЧЕСКИЕ МЕТОДЫ АНАЛИЗА" в других словарях:

    - (a. physical methods of analysis; н. physikalische Analyseverfahren; ф. procedes physiques de l analyse; и. metodos fisicos de analisis) совокупность методов качеств. и количеств. анализа веществ, основанных на измерении физ.… … Геологическая энциклопедия

    физические методы анализа - fizikiniai analizės metodai statusas T sritis chemija apibrėžtis Metodai, pagrįsti medžiagų fizikinių savybių matavimu. atitikmenys: angl. physical analytical methods; physical methods of analysis rus. физические методы анализа … Chemijos terminų aiškinamasis žodynas

    - (РМА), методы качеств. и количеств. хим. анализа с использованием радионуклидов. Последние могут содержаться в исходном анализируемом в ве (напр., прир. радионуклиды таких элементов, как К, Th, U и др.), м. б. введены на определенном этапе… … Химическая энциклопедия

    - (a. chemical methods of analysis; н. chemische Analyseverfahren; ф. procedes chimiques de l analyse; и. metodos quimicos de analisis) совокупность методов качеств. и количеств. анализа веществ, осн. на применении хим. реакций. … … Геологическая энциклопедия

    Содержание 1 Методы электроаналитической химии 2 Введение 3 Теоретическая часть … Википедия

    I. Метод и мировоззрение. II. Проблемы историографии домарксистского литературоведения. III. Краткий обзор основных течений домарксистского литературоведения. 1. Филологическое изучение памятников слова. 2. Эстетический догматизм (Буало, Готтшед … Литературная энциклопедия

    Методы математические, применяемые в технологии сборного железобетона - – условно делятся на три группы: группа А – вероятностно статистические методы, включающие использование общей теории вероятностей, описательной статистики, выборочного метода и проверки статистических гипотез, дисперсионного и… … Энциклопедия терминов, определений и пояснений строительных материалов

    - (в аналитической химии) важнейшие аналитические операции, необходимые потому, что большинство аналитических методов недостаточно селективны (избирательны), т. е. обнаружению и количественному определению одного элемента (вещества) мешают многие… … Википедия

    ТРИЗ теория решения изобретательских задач, основанная Генрихом Сауловичем Альтшуллером и его коллегами в 1946 году, и впервые опубликованная в 1956 году это технология творчества, основанная на идее о том, что «изобретательское творчество… … Википедия

    Методы химического анализа физические - совокупность физических методов качественного и количественного анализа химических соединений и элементов. Основаны на измерении физических свойств исследуемых веществ (атомных, молекулярных, электрических, магнитных, оптических и т. п.). В… … Толковый словарь по почвоведению

Книги

  • Физические методы исследования их практическое применение в химическом анализе. Учебное пособие , Я. Н. Г. Ярышев, Ю. Н. Медведев, М. И. Токарев, А. В. Бурихина, Н. Н. Камкин. Учебное пособие предназначено для использования при изучении дисциплин: `Физические методы исследования`, `Стандартизация и сертификация пищевых продуктов`, `Химия окружающей среды`, `Гигиена…

Все существующие методы аналитической химии можно разделить на методы пробоотбора, разложения проб, разделение компонентов, обнаружения (идентификация) и определения.

Практически все методы основаны на зависимости между составом вещества и его свойствами. Для обнаружения компонента или его количества измеряют аналитический сигнал .

Аналитический сигнал – это среднее из измерений физической величены на заключительной стадии анализа. Аналитический сигнал функционально связан с содержанием определяемого компонента. Эта может быть сила тока, ЭДС системы, оптическая плотность, интенсивность излучения и т.д.

В случае необходимости обнаружения какого-либо компонента обычно фиксируют появление аналитического сигнала – появление осадка, окраски, линии в спектре и т.д. Появление аналитического сигнала должно быть надежно зафиксировано. При определенном количестве компонента измеряется величина аналитического сигнала: масса осадка, сила тока, интенсивность линий спектра и т.д. Затем рассчитывается содержание компонента с использованием функциональной зависимости аналитический сигнал – содержание: y=f(c), которая устанавливается расчетным или опытным путем и может быть представлена в виде формулы, таблицы или графика.

В аналитической химии различают химические, физические и физико-химические методы анализа.

В химических методах анализа определяемый элемент или ион переводят в какое – либо соединение, обладающее тем или иным характерными свойствами, на основании которых можно установить, что образовалось именно это соединение.

Химические методы анализа имеют определенную область применения. Также и скорость выполнения анализов с помощью химических методов не всегда удовлетворяет нужды производства, где очень важно получить анализы своевременно, пока еще можно регулировать технологический процесс. Поэтому наряду с химическими получают все большее распространение физические и физико-химические методы анализа.

Физические методы анализа основаны на измерении какого-либо

параметра системы, который является функцией состава, например, эмиссионных спектров поглощения, электро- или теплопроводности, потенциала электрода, погруженного в раствор, диэлектрической проницаемости, показателя преломления, ядерного магнитного резонанса и т.д.

Физические методы анализа дают возможность решать вопросы, которые нельзя разрешить методами химического анализа.

Для анализа веществ широко используются физико-химические методы анализа, основанные на химических реакциях, протекание которых сопровождается изменением физических свойств анализируемой системы, например, её цвет, интенсивность окраски, прозрачность, величины тепло- и электропроводимости и т.д.

Физико-химические методы анализа отличаются высокой чувствительностью и экспрессностью выполнения, дают возможность автоматизировать химико-аналитические определения и являются незаменимым при анализе малых количеств веществ.

Следует отметить, что между физическими и физико-химическими методами анализа не всегда можно провести строгую границу. Иногда их объединяют под общим названием «инструментальные» методы, т.к. для выполнения тех или иных измерений требуются приборы, позволяющие с большой точностью измерить значения определённых параметров, характеризующих те или иные свойства вещества.

АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА Издательство ТГТУ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" М.И. ЛЕБЕДЕВА АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА Лекции к курсу Тамбов Издательство ТГТУ 2005 УДК 543(075) ББК Г4я73-4 Л33 Рецензенты: Доктор химических наук, профессор А.Б. Килимник Кандидат химических наук, доцент кафедры неорганической и физической химии ТГУ им. Г.Р. Державина А.И. Рягузов Лебедева, М.И. Л33 Аналитическая химия и физико-химические методы анализа: учеб. пособие / М.И. Лебедева. Там- бов: Изд-во Тамб. гос. техн. ун-та, 2005. 216 с. Рассмотрены основные вопросы курса «Аналитическая химия и физико-химические методы ана- лиза». После изложения теоретического материала в каждой главе даны содержательные блоки по про- верке знаний с помощью тестовых заданий и приведен рейтинг оценки знаний. В третьем разделе каж- дой главы приведены решения наиболее сложных задач и их оценка в баллах. Предназначены для студентов нехимических специальностей (200401, 200402, 240202, 240802, 240902) и составлены в соответствии со стандартами и учебными программами. УДК 543(075) ББК Г4я73-4 ISBN 5-8265-0372-6 © Лебедева М.И., 2005 © Тамбовский государственный технический университет (ТГТУ), 2005 Учебное издание ЛЕБЕДЕВА Мария Ивановна АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА Лекции к курсу Редактор В.Н. Митрофанова Компьютерное макетирование Д.А. Лопуховой Подписано в печать 21.05.2005 Формат 60 × 84 / 16. Бумага офсетная. Печать офсетная Гарнитура Times New Roman. Объем: 12,55 усл. печ. л.; 12,50 уч.-изд. л. Тираж 200 экз. С. 571М Издательско-полиграфический центр Тамбовского государственного технического университета, 392000, Тамбов, Советская, 106, к. 14 ПРЕДИСЛОВИЕ Без анализа нет синтеза Ф. Энгельс Аналитическая химия – наука о способах идентификации химических соединений, о принципах и методах определения химического состава веществ и их структуры. Особую актуальность аналитическая химия приобрела в настоящее время, поскольку основным фактором неблагоприятного антропогенного воздействия на природу являются химические загрязнения. Определение их концентрации в различных природных объектах становится важнейшей задачей. Зна- ния основ аналитической химии одинаково необходимо современному студенту, инженеру, преподава- телю, предпринимателю. Ограниченное количество учебников и учебных пособий по курсу «Аналитическая химия и физико- химические методы анализа» для студентов химического профиля и полное их отсутствие для специ- альностей «Стандартизация и сертификация», «Пищевая биотехнология», «Инженерная защита окру- жающей среды», а также мой многолетний опыт преподавания этой дисциплины в ТГТУ привели к не- обходимости составления и издания предлагаемого курса лекций. Предлагаемое издание состоит из одиннадцати глав, в каждой из которых выделены наиболее важ- ные теоретические вопросы, отражающие последовательность изложения материала в лекционном кур- се. I – V главы посвящены химическим (классическим) методам анализа, в VIII – X рассмотрены основ- ные физико-химические методы анализа, а XI глава посвящена органическим аналитическим реагентам. Изучение каждого раздела рекомендуется завершать решением соответствующего содержательного блока, расположенного в конце главы. Блоки заданий сформулированы в трех специальных формах. Теоретические задания с выбором ответов (тип А). К каждому теоретическому вопроса такого типа предлагаются по четыре привлекательных варианта ответов, только один из которых является верным. За любое правильно решенное задание типа А студент получает один балл. Задачи с выбором ответов (тип B)1 оцениваются в два балла. Они несложные и решаются практиче- ски в одно или несколько действий. Верный ответ выбирается из четырех предлагаемых вариантов. Задания с развернутым ответом (тип С)2 предлагают студенту записать ответ в развернутой форме и в зависимости от полноты решения и его правильности могут оцениваться от одного до пяти баллов. Максимальное количество баллов дается за полностью решенное задание и указывается в последней строке рейтинговой таблицы. Суммарное количество баллов, набранные по той или иной теме, являются показателем знаний сту- дента, уровень которых можно оценить в предлагаемой рейтинговой системе. Набранное количество баллов Оценка 32 – 40 Отлично 25 – 31 Хорошо 16 – 24 Удовлетворительно Меньше 16 Неудовлетворительно Автор выражает благодарность студентам Авсеевой А., Бусиной М., Зобниной Е., Кацуба Л., Поля- ковой Н., Тишкиной Э. (гр. ПБ-21), Поповой С. (гр. З-31), принимавшим активное участие в оформлении работы. 1 В некоторых главах могут отсутствовать 2 В некоторых главах могут отсутствовать «Аналитическая химия чутко реагирует на за- просы производства и черпает для себя в этом силу и импульсы для дальнейшего рос- та.» Н.С. Курнаков 1 АНАЛИТИЧЕСКАЯ ХИМИЯ КАК НАУКА. ОСНОВНЫЕ ПОНЯТИЯ В решении крупнейших общечеловеческих проблем (проблема сырья, продовольствия, атомной энергетики, космонавтики, полупроводниковой и лазерной техники) ведущее место принадлежит ана- литической химии. Основой экологического мониторинга является совокупность различных химических наук, каждая из которых нуждается в результатах химического анализа, поскольку химическое загрязнение – основ- ной фактор неблагоприятного антропогенного воздействия на природу. Целью аналитической химии становится определение концентрации загрязняющих веществ в различных природных объектах. Ими являются природные и сточные воды различного состава, донные отложения, атмосферные осадки, воз- дух, почвы, биологические объекты и т.д. Широкое внедрение высокоэффективных мер контроля над состоянием окружающей природной среды, не ликвидируя болезнь в корне, очень важно для диагностики. Эффект в этом случае может быть получен намного быстрее и с наименьшими затратами. Система контроля дает возможность вовремя обнаружить вредные примеси и локализовать источ- ник загрязнения. Вот почему роль аналитической химии в охране окружающей среды приобретает все большее значение. Аналитическая химия – это наука о способах идентификации химических соединений, о принци- пах и методах определения химического состава веществ и их структуры. Она является научной осно- вой химического анализа. Химический анализ – это получение опытным путем данных о составе и свойствах объектов. Впервые это понятие научно обосновал Р. Бойль в книге «Химик-скептик» (1661 г.) и ввел термин «ана- лиз». Аналитическая химия базируется на знаниях, полученных при изучении курсов неорганической, ор- ганической, физической химии, физики и математики. Цель изучения аналитической химии – освоение современных методов анализа веществ и их при- менение для решения народно-хозяйственных задач. Тщательный и постоянный контроль производства и объектов окружающей среды основан на достижениях аналитической химии. В. Оствальд писал: «Аналитическая химия, или искусство распознавать вещества или их составные части, занимает среди приложений научной химии особое место, так как вопросы, на которые она дает возможность ответить, возникают всегда при попытке воспроизвести химические процессы для науч- ных или технических целей. Благодаря такому своему значению аналитическая химия с давних пор встречает постоянную заботу о себе…». 1.1 Краткая история развития аналитической химии История развития аналитической химии неотделима от истории развития химии и химической про- мышленности. Отдельные приемы и методы химического анализа были известны с глубокой древности (распознавание веществ по цвету, запаху, вкусу, твердости). В IX – X вв. на Руси пользовались так на- зываемым «пробирным анализом» (определение чистоты золота, серебра и руд). Так, сохранились запи- си Петра I о выполнении им «пробирного анализа» руд. При этом качественный анализ (определение качественного состава) всегда предшествовал количественному анализу (определение количественно- го соотношения компонентов). Основоположником качественного анализа считают английского ученого Роберта Бойля, кото- рый впервые описал методы обнаружения SO 2 − – и Cl − – ионов с помощью Ba 2 + – и Ag + – ионов, а также 4 применил органические красители в качестве индикаторов (лакмус). Однако аналитическая химия нача- ла формироваться в науку после открытия М.В. Ломоносовым закона сохранения веса веществ при хи- мических реакциях и применения весов в химической практике. Таким образом, М.В. Ломоносов – ос- новоположник количественного анализа. Современник Ломоносова академик Т.Е. Ловиц установил взаимосвязь между формой кристаллов и их химическим составом: «микрокристаллоскопический анализ». Первые классические работы по хи- мическому анализу принадлежат академику В.М. Севергину, опубликовавшему «Руководство по испы- танию минеральных вод». В 1844 г. профессор Казанского университета К.К. Клаус, анализируя «сы- рую платину», обнаружил новый элемент – рутений. Переломным этапом в развитии аналитической химии, в становлении ее как науки было открытие периодического закона Д.И. Менделеевым (1869 г.). Труды Д.И. Менделеева составили теоретический фундамент методов аналитической химии и определили основное направление ее развития. В 1871 г. вышло первое руководство по качественному и количественному анализу Н.А. Меншут- кина «Аналитическая химия». Аналитическая химия создавалась трудами ученых многих стран. Неоце- нимый вклад в развитие аналитической химии внесли русские ученые: А.П. Виноградов, Н.А. Тананаев, И.П. Алимарин, Ю.А. Золотов, А.П. Крешков, Л.А. Чугаев, М.С. Цвет, Е.А. Божевольнов, В.И. Кузне- цов, С.Б. Саввин и др. Развитие аналитической химии в первые годы Советской власти проходило в трех основных на- правлениях: – помощь предприятиям в выполнении анализов; – разработка новых методов анализа природных и промышленных объектов; – получение химических реактивов и препаратов. В годы ВОВ аналитическая химия выполняла оборонные задания. Длительное время в аналитической химии господствовали так называемые «классические» методы анализа. Анализ рассматривался как «искусство» и резко зависел от «рук» экспериментатора. Техниче- ский прогресс требовал более быстрых, простых методов анализа. В настоящее время большинство мас- совых химических анализов выполняется с помощью полуавтоматических и автоматических приборов. При этом цена оборудования окупается его высокой эффективностью. В настоящее время необходимо применять мощные, информативные и чувствительные методы ана- лиза, чтобы контролировать концентрации загрязнителей, меньшие ПДК. В самом деле, что означает нормативное «отсутствие компонента»? Может быть, его концентрация настолько мала, что традицион- ным способом ее не удается определить, но сделать это все равно нужно. Действительно, охрана окру- жающей среды – вызов аналитической химии. Принципиально важно, чтобы предел обнаружения загрязняющих веществ аналитическими методами был не ниже 0,5 ПДК. 1.2 ТЕХНИЧЕСКИЙ АНАЛИЗ На всех стадиях любого производства осуществляется технический контроль – т.е. проводятся ра- боты по контролю качества продукции в ходе технологического процесса с целью предотвращения брака и обеспечения выпуска продукции, соответствующей ТУ и ГОСТам. Технический анализ делится на общий – анализ веществ, встречающийся на всех предприятиях (Н2О, топливо, смазочные материалы) и специальный – анализ веществ, встречающихся только на данном предприятии (сырье, полупродукты, отходы производства, конечный продукт). С этой целью ежедневно тысячи химиков-аналитиков выполняют миллионы анализов, согласно со- ответствующим Международным ГОСТам. Методика анализа – подробное описание выполнения аналитических реакций с указанием условий их выполнения. Ее задачей является овладение навыками эксперимента и сущностью аналитических ре- акций. Методы аналитической химии основаны на различных принципах. 1.3 КЛАССИФИКАЦИЯ МЕТОДОВ АНАЛИЗА 1 По объектам анализа: неорганический и органический. 2 По цели: качественный и количественный. Количественный анализ позволяет установить количественные соотношения составных частей данного соединения или смеси веществ. В отличие от качественного анализа количественный анализ дает возможность определить содержание отдельных компонентов анализируемого вещества или общее содержание определяемого вещества в исследуемом объекте. Методы качественного и количественного анализа, позволяющие определить в анализируемом ве- ществе содержание отдельных элементов, называют элементным анализом; функциональных групп – функциональным анализом; индивидуальных химических соединений, характеризующихся опреде- ленной молекулярной массой, – молекулярным анализом. Совокупность разнообразных химических, физических и физико-химических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом. 3 По способу выполнения: химические, физические и физико-химические (инструментальные) методы. 4 По массе пробы: макро– (>> 0,10г), полумикро– (0,10 – 0,01г), микро– (0.01 – 10 −6 г), ультрамик- роанализ (< 10 −6 г). 1.4 АНАЛИТИЧЕСКИЕ РЕАКЦИИ 1.4.1 Способы выполнения аналитических реакций В основе аналитических методов – получение и измерение аналитического сигнала, т.е. любое проявление химических и физических свойств вещества в результате протекания химической реакции. Аналитические реакции можно проводить «сухим» и «мокрым» путем. Примеры реакций, проводимых «сухим» путем: реакции окрашивания пламени (Na + – желтый; Sr 2+ – красный; Ba 2+ – зеленый; K + – фиолетовый; Tl 3+ – зеленый, In + – синий и др.); при сплавлении Na 2 B 4 O 7 и Co 2+ , Na 2 B 4 O 7 и Ni 2+ , Na 2 B 4 O 7 и Cr 3+ образуются «перлы» буры различной окраски. Чаще всего аналитические реакции проводят в растворах. Анализируемый объект (индивидуальное вещество или смесь веществ) может находиться в любом агрегатном состоянии (твердом, жидком, газо- образном). Объект для анализа называется образцом, или пробой. Один и тот же элемент в образце мо- жет находиться в различных химических формах. Например: S 0 , S 2− , SO 2 − , SO 3 - и т.д. В зависимости от 4 2 цели и задачи анализа после переведения в раствор пробы проводят элементный анализ (определение общего содержания серы) или фазовый анализ (определение содержания серы в каждой фазе или в ее отдельных химических формах). Выполняя ту или иную аналитическую реакцию необходимо строго соблюдать определенные усло- вия ее протекания (температура, рН раствора, концентрация) с тем, чтобы она протекала быстро и имела достаточно низкий предел обнаружения. 1.4.2 Классификация аналитических реакций 1 Групповые реакции: один и тот же реактив реагирует с группой ионов, давая одинаковый сиг- нал. Так, для отделения группы ионов (Ag + , Pb 2+ , Hg 2+) используют реакцию их с Cl − – ионами, при этом 2 образуются белые осадки (AgCl, PbCl 2 , Hg 2 Cl 2). 2 Избирательные (селективные) реакции. Пример: йодокрахмальная реакция. Впервые ее описал в 1815 г. немецкий химик Ф. Штромейер. Для этих целей используют органические реагенты. Пример: диметилглиоксим + Ni 2+ → образование ало − красного осадка диметилглиоксимата никеля. Изменяя условия протекания аналитической реакции, можно неизбирательные реакции сделать из- бирательными. Пример: если реакции Ag + , Pb 2 + , Hg 2 + + Cl − проводить при нагревании, то PbCl 2 не осаждается, так как он 2 хорошо растворим в горячей воде. 3 Реакции комплексообразования используются для целей маскирования мешающих ионов. Пример: для обнаружения Со 2+ в присутствии Fe 3+ – ионов с помощью KSCN , реакцию проводят в присутствии F − – ионов. При этом Fe 3+ + 4F − → − , K н = 10 −16 , поэтому Fe 3+ – ионы закомплексованы и не мешают определению Co 2+ – ионов. 1.4.3 Реакции, используемые в аналитической химии 1 Гидролиз (по катиону, по аниону, по катиону и аниону) Al 3+ + HOH ↔ Al(OH) 2+ + H + ; CO 3 − + HOH ↔ HCO 3 + OH − ; 2 − Fe 3+ + (NH 4) 2 S + HOH → Fe(OH) 3 + ... 2 Реакции окисления–восстановления + 2MnSO 4 + 5K 2 S 2 O 8 + 8H 2 O Ag → 2HMnO 4 + 10KHSO 4 + 2H 2 SO 4  3 Реакции комплексообразования СuSO 4 + 4 NH 4 OH → SO 4 + 4H 2 O 4 Реакции осаждения Ba 2+ + SO 2− →↓ BaSO 4 4 1.4.4 Сигналы методов качественного анализа 1 Образование или растворение осадка Hg 2+ + 2I − →↓ HgI 2 ; красный HgI 2 + 2KI − → K 2 бесцветный 2 Появление, изменение, исчезновение окраски раствора (цветные реакции) Mn 2 + → − MnO 4 → MnO 2 − 4 бесцветный фиолетовый зеленый 3 Выделение газа SO 3 − + 2H + → SO 2 + H 2 O. 2 4 Реакции образования кристаллов строго определенной формы (микрокристаллоскопические ре- акции). 5 Реакции окрашивания пламени. 1.5 Аналитическая классификация катионов и анионов Для катионов существуют две классификации: кислотно-основная и сероводородная. Сероводо- родная классификация катионов представлена в табл. 1.1. 1.1 Сероводородная классификация катионов Аналитическая Аналитическая Катионы Групповой реагент группа форма І K + , Na + , NH + , Mg 2 + 4   (NH 4) 2 CO 3 + NH 4 OH + NH 4 Cl II Ba 2 + , Sr 2 + , Ca 2 + MeCO3 ↓ pH ~ 9 Al3 + , Cr 3 + (NH 4) 2 S + NH 4 OH + NH 4 Cl Me(OH)m ↓ III Zn 2 + , Mn 2 + , Ni 2 + , Co 2 + , Fe 2 + , Fe3 + pH ~ 9 MeS ↓ Cu 2 + , Cd 2 + , Bi 3 + , Sn 2 + , Sn 4 + H 2S → HCl, IV MeS ↓ Hg 2 + , As3 + , As5 + , Sb 3 + , Sb 5 + pH ~ 0,5 V Ag + , Pb 2 + , 2 + HCl MeCl m ↓ Все анионы делятся на две группы: 1 Групповой реагент – BaCl 2 ; при этом образуются растворимые соли бария: − − − Cl , Br , I , NO 3 , CH 3 COO − , SCN − , − , 4− 3− 2 − ClO − , ClO − , ClO 3 , ClO − . − , BrO3 4 2 Анионы образуют малорастворимые соли бария, которые растворимы в уксусной, соляной и азотной кислотах (за исключением BaSO 4): F − , CO 3 − , SO 2− , SO 3 − , S 2 O 3 − , SiO 3 − , CrO 2− , PO 3− . 2 4 2 2 2 4 4 1.5.1 Схема анализа по идентификации неизвестного вещества 1 Окраска сухого вещества: черная: FeS, PbS, Ag 2 S, HgS, NiS, CoS, CuО, MnO 2 и др; оранжевая: Cr2 O 7− и др; 2 желтая: CrO 2− , HgO, CdS ; 4 красная: Fe(SCN) 3 , Co 2+ ; синяя: Cu 2+ . 2 Окраска пламени. 3 Проверка на наличие кристаллизационной воды. 4 Действие кислот на сухую соль (газ). 5 Подбор растворителя (при комнатной температуре, при нагревании): H 2 O, CH 3 COOH, HCl, H 2 SO 4 , «царская водка», сплавление с Na 2CO3 и последующее выщелачивание. Следует помнить, что практи- чески все нитраты, все соли калия, натрия и аммония растворимы в воде. 6 Контроль pH раствора (только для растворимых в воде объектов). 7 Предварительные испытания (Fe 2+ , Fe 3+ , NH +). 4 8 Обнаружение группы катионов, анионов. 9 Обнаружение катиона. 10 Обнаружение аниона. 1.6 Методы разделения и концентрирования Разделение – это операция (процесс), в результате которого компоненты, составляющие исходную смесь, отделяются один от другого. Концентрирование – операция (процесс), в результате которого повышается отношение концен- трации или количества микрокомпонентов к концентрации или количеству макрокомпонентов. Необходимость разделения и концентрирования может быть обусловлена следующими факторами: – проба содержит компоненты, мешающие определению; – концентрация определяемого компонента ниже предела обнаружения метода; – определяемые компоненты неравномерно распределены в пробе; – отсутствуют стандартные образцы для градуировки приборов; – проба высокотоксична, радиоактивна или дорога. Большинство методов разделения основано на распределении вещества между двумя фазами: I – водной и II – органической. Например, для вещества А имеет место равновесие A I ↔ A II . Тогда отношение концентрации вещества А в органической фазе к концентрации вещества в водной фазе называется константой распределения K D KD = [A]II [A]I Если обе фазы – растворы, насыщенные относительно твердой фазы, и экстрагируемое вещество существует в единственной форме, то при равновесии константа распределения равна S II KD = , (1.1) SI где S I , S II – растворимости вещества в водной и органической фазах. Абсолютно полное извлечение, а, следовательно, и разделение теоретически неосуществимы. Эф- фективность извлечения вещества А из одной фазы в другую можно охарактеризовать двумя фактора- ми: полнотой извлечения Rn и степенью отделения примесей Rc . x y Rn = ; Rc = , (1.2) x0 y0 где x и x0 – содержание извлекаемого вещества и содержание его в исходном образце; y и y0 – конечное и исходное содержание примеси. Чем меньше Rc и чем больше Rn , тем совершеннее разделение.

ФИЗИЧЕСКИЕ МЕТОДЫ АНАЛИЗА (а. physical methods of analysis; н. physikalische Analyseverfahren; ф. procedes physiques de l"analyse; и. metodos fisiсоs de analisis) — совокупность методов качественного и количественного анализа веществ, основанных на измерении физических характеристик, обусловливающих химическую индивидуальность определяемых компонентов.

Физические методы анализа подразделяют на три группы: спектроскопические, ядерно-физические и радиохимические. Из спектроскопических методов наиболее распространён атомно-эмиссионный анализ. Атомы или ионы, возбуждённые дуговым, искровым разрядом, высокочастотной или индукционной плазмой, испускают световую энергию. Каждый элемент характеризуется своим набором спектральных линий. Интенсивность излучения данного элемента определяется его концентрацией в анализируемой пробе . Характерной особенностью атомно-эмиссионного анализа является возможность одновременного определения нескольких элементов. Абсолютный предел обнаружения некоторых элементов достигает 10 г. Широко распространён атомно-абсорбционный анализ, основанный на измерении поглощения света свободными атомами элементов. В основе атомно-флуоресцентного анализа лежит спонтанный переход атомов, возбуждённых световым потоком, в исходное состояние, сопровождаемый флуоресценцией.

В рентгеноспектральных методах пробу облучают потоком электронов и по величине возникающего при этом рентгеновского излучения судят о содержании определяемого вещества в пробе. В другом варианте метода пробу облучают не электронами, а рентгеновскими лучами и определяют интенсивность вторичного излучения (рентгенофлуоресцентный анализ). Рентгеновские методы пригодны для локального анализа (фокусируют пучок электронов) без разрушения анализируемого образца. Рентгенофлуоресцентный метод позволяет определять свыше 80 химических элементов с относительной погрешностью до 1%. На многоканальных рентгеновских квантометрах проводят анализ горных пород и минералов на основные породообразующие элементы за несколько минут (см. Рентгенографический фазовый анализ , Рентгенография , ).

Macc-спектрометрические методы основаны на разном отклонении в магнитном поле различных по массе ионов, которые получают ионизацией исследуемого вещества, например в искре. Эти методы часто применяют для определения примесей в материалах. Метод позволяет одновременно определять до 70 химических элементов примесей в твёрдых веществах. Абсолютный предел обнаружения элементов достигает 10-15 г (см. Macc-спектрометрия).

Из ядерно-физических методов наиболее важное значение имеет радиоактивационный анализ, в котором вещество облучают нейтронами, гамма-квантами или заряженными частицами. При взаимодействии облучающих частиц с ядрами атомов элементов в веществе в результате ядерных реакций образуются радиоактивные "дочерние" элементы или изотопы. По величине их радиоактивности судят о количестве определяемого элемента в пробе. Радиоактивационный метод обладает исключительно низким пределом обнаружения и позволяет определять до 10-10% примесей в геологических образцах и других материалах. По характеру используемого для активации излучения различают нейтронно-активационный, гамма-активационный и другие анализы (см. Радиографический анализ , ).

К радиохимическим методам относится метод изотопного разбавления. К анализируемому образцу прибавляют радиоактивный изотоп определяемого элемента и после установления химического равновесия выделяют каким-либо способом определенную часть данного элемента. Измеряют радиоактивность этой выделенной части и по её значению рассчитывают содержание элемента в пробе (см. ).

Физические методы анализа характеризуются высокой производительностью, низкими пределами обнаружения элементов, объективностью результатов анализа, высоким уровнем автоматизации. Физические методы анализа используют при анализе горных пород и минералов. Например, атомно-эмиссионным методом определяют

ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ , изучает зависимости между составом и св-вами макроскопич. систем, составленных из неск. исходных в-в (компонентов). Для физико-химического анализа характерно представление этих зависимостей графически, в виде диаграммы состав-свойство ; применяют также таблицы числовых данных и аналит. записи. T. к. св-ва системы зависят не только от ее состава, но и от др. факторов, определяющих состояние системы,- давления , т-ры, степени дисперсности , на-пряженностей гравитац. и электромагн. полей, а также времени наблюдения,- то в общей форме говорят о диаграммах фактор равновесия - св-во, или о физ.-хим. (химических) диаграммах. На этих диаграммах все хим. процессы, происходящие в системах при изменении к.-л. фактора равновесия , как то - образование и распад хим. соед., появление и исчезновение твердых и (или) жидких р-ров и т. п., выражаются как геом. изменения комплекса линий, пов-стей и точек, к-рый образует диаграмму. Поэтому анализ геометрии диаграмм позволяет делать заключения о соответственных процессах в системе.

Два осн. принципа физико-химического анализа были сформулированы Н.С. Курнаковым. Согласно принципу соответствия, каждой совокупности фаз, находящихся в данной системе в равновесии в соответствии с фаз правилом , на диаграмме отвечает определенный геом. образ. На основании этого принципа Н.С. Курнаков определил физико-химический анализ как геом. метод исследования хим. превращений.

Второй осн. принцип физико-химического анализа, наз. принципом непрерывности, формулируется след. образом: при непрерывном изменении параметров, определяющих состояние системы, св-ва отдельных ее фаз изменяются непрерывно. Св-ва же системы в целом изменяются также непрерывно, но при условии, что не возникают новые фазы и не исчезают старые; если же число фаз меняется, то изменяются и св-ва системы, причем, как правило, скачкообразно.

Третий принцип физико-химического анализа был предложен Я.Г. Горощенко. Он утверждает, что любой набор компонентов, независимо от их числа и физ.-хим. св-в, может составить систему (принцип совместимости). Из него следует, что диаграмма любой системы содержит все элементы частных систем (подсистем), из к-рых она составлена. В общей системе элементы трансляции частных систем совмещаются с геом. образами на хим. диаграмме, возникающими как отображение процессов, протекающих с участием всех компонентов общей системы.

Одним из осн. направлений теории физико-химического анализа является изучение топологии хим. диаграммы. Преимущество физико-химического анализа как метода исследования заключается в том, что он не требует выделения продукта хим. взаимодействия компонентов из реакционной смеси, вследствие чего метод позволяет исследовать хим. превращения в р-рах, сплавах (особенно металлических), стеклах и т. п. объектах, к-рые практически невозможно исследовать с применением классич. препара-тивно-синтетич. методов. Широкое использование физико-химический анализ получил при исследовании комплексообразования в р-рах с целью выяснения состава и определения устойчивости хим. соединений. График состав - св-во имеет обычно один экстремум, как правило, максимум. В простых случаях максимум соответствует молярному отношению компонентов системы , представляющему стехиометрию комплексного соед. В общем случае точки экстремумов на кривых (или пов-стях) св-в, а также точки перегибов не отвечают составу образующихся в системе хим. соед., но в пределе, когда степень диссоциации хим. соед. равна нулю, непрерывная кривая зависимости св-ва от состава распадается на две ветви, пересекающиеся в сингулярной точке , абсцисса к-рой отвечает составу хим. соединения.

Диаграммы состав - св-во лежат в основе аналит. методов (колориметрия , потенциометрия и др.). Для использования к.-л. св-ва в аналит. целях желательно, чтобы существовала аддитивная зависимость значений этого св-ва от состава. Поэтому важное значение уделяется рациональному выбору св-ва (в частности, прямого или обратного, напр. электропроводности или электросопротивления), а также выбору способа выражения концентрации компонентов системы (массо вые, молярные, объемные, эквивалентные доли или проценты). В совр. физико-химическом анализе число используемых св-в системы составляет много десятков. В принципе можно применять любое св-во, к-рое м. б. измерено или вычислено. Напр., при решении теоретич. вопросов, в частности при выводе разл. типов диаграмм, используют к.-л. термодинамич. потенциал, к-рый не м. б. измерен непосредственно. При выборе св-ва необходимо учитывать как возможную точность определения его значений, так и его чувствительность к происходящим в системе хим. превращениям. Напр., плотность в-ва м. б. определена с большой точностью, но она малочувствительна к образованию хим. соед., тогда как твердость чутко реагирует на хим. взаимод. в системе, однако мала точность ее определения. Для физико-химического анализа характерно параллельное исследование и сопоставление результатов определения неск. св-в, напр. электропроводности, твердости .

Среди хим. диаграмм особое место занимают диаграммы плавления (плавкости), диаграммы р-римости, диаграммы давления пара , к-рые являются вариантами диаграммы состояния . На таких диаграммах любая точка, независимо от того, находится она на к.-л. линии или пов-сти диаграммы или нет, описывает состояние системы. Диаграмма состояния есть основа диаграммы любого св-ва, т. к. значение каждого из св-в системы зависит в общем случае и от состава, и от т-ры, и от давления , т.е. от всех факторов равновесия , соотношение между к-рыми дает диаграмма состояния . Все шире исследуют и используют на практике диаграммы, показывающие зависимость состояния системы одновременно от двух важнейших факторов равновесия - давления и т-ры. Эти диаграммы обозначают как р-Т-х-диаграммы (х - молярная доля компонента). Даже для двойной системы построение р-Т-х- диаг-раммы требует использования пространств, системы координат, поэтому диаграмма состав - св-во для двойных и более сложных систем строятся и исследуются, как правило, при постоянных давлении , т-ре, др. внеш. факторах. Сложность построения хим. диаграмм потребовала развития соответствующих методов графич. изображения.

Ф изико-химический анализ способствовал решению мн. теоретич. проблем химии , в частности, созданию теории строения хим. соед. переменного состава (см. Нестехиометрия). Физико-химический анализ является основой создания новых и модифицирования известных материалов - сплавов , полупроводников , стекол, керамики и т.д. путем, напр., легирования . На физико-химическом анализе и физ.-хим. диаграммах базируются многие технол. процессы, связанные, в частности, с кристаллизацией , ректификацией , экстракцией и т. п., т. е. с разделением фаз. Подобные диаграммы указывают, в частности, на условия выделения соед., выращивания монокристаллов . T. наз. метод остаточных концентраций позволяет исследовать р-ции осаждения хим. соед. в результате взаимод. в р-рах. По этому методу состав твердых фаз -продуктов р-ции - определяется разностью между содержанием реагирующих компонентов в ряду исходных смесей и в соответствующих равновесных р-рах по окончании взаимод. При этом строится диаграмма зависимости равновесных кон-центраций реагирующих компонентов в р-ре от отношения между ними в исходных смесях. Параллельно обычно изменяют рН, электропроводность р-ров, поглощение света суспензией , др. св-ва.

В классич. физико-химическом анализе системы исследовались только в равновесном состоянии. Приближение к равновесию часто требует большого времени либо вообще трудно достижимо, поэтому для практич. использования метода необходимо изучение систем в неравновесном состоянии, в частности в процессе приближения к равновесию . Строго говоря, неравновесными считаются системы, в к-рых участвуют метастаоильные модификации в-в, способные существовать сколь угодно продолжительное время. Техн. применение материалов в неравновесном состоянии, напр. стеклообразных металлич. сплавов , композиционных материалов , стеклообразных полупроводников , привело к необходимости изучения диаграмм состав -св-во для заведомо неравновесных систем.

Физико-химический анализ оказался плодотворным для исследования и синтеза новых соед. в результате необратимых р-ций в неравновесных системах. Исследование систем в процессе перехода в равновесное состояние позволяет установить существование не только конечных продуктов р-ции, но и промежут. в-в, а также образующихся нестойких в-в. Кинетич. фактор, т. е. скорость превращения (скорость приближения к равновесию), теперь рассматривается на равных правах с др. критериями и др. св-вами. На св-ва системы существенное влияние оказывает ее дисперсность - мол.-дисперсное распределение компонентов (субмикроскопич. состояние), состояние коллоидного растворения и т. д., вплоть до монокристаллич. состояния. Диаграммы состав - структура - степень дисперсности - св-во определяют особенности совр. изучения в физико-химическом анализе.

Развитие ЭВМ привело к тому, что в физико-химическом анализе значительно усилилась роль аналит. формы выражения зависимостей св-в системы от ее состава. Это облегчает хранение информации (совр. компьютерные системы позволяют собирать и хранить справочный материал по хим. диаграммам и в графич. виде) и, в особенности, мат. обработку результатов, к-рая прежде применялась в осн. лишь при исследовании комплексообра-зования в р-рах. В известной мере использование совр. вычислит, техники позволяет преодолеть ограниченность физико-химического анализа, заключающуюся в том, что он устанавливает, какие именно хим. превращения имеют место в системе, но не дает ответа на вопросы, связанные с причиной и механизмом этих превращений. Расчетные методы позволяют извлечь дополнит. информацию из хим. диаграмм, напр. определять степень диссоциации хим. соед. в расплаве на основании анализа кривизны линии ликвидуса для двойных систем или изменение свободной энергии системы при обмене солей , исходя из формы изотерм пов-сти ликвидуса для тройных взаимных систем. Привлечение разл. теорий твердого тела , моделей жидкости и состояний газовых смесей, наряду с обобщением эксперим. данных, позволяет получать физ.-хим. диаграммы (или их элементы) расчетным путем.

Исторический очерк. Осн. идея физико-химического анализа была высказана М.В. Ломоносовым (1752), первые попытки установить образование в системе хим. соед., исходя из зависимости ее св-в от состава, относятся к нач. 19 в. В сер . 19 в. работами П.П. Аносова (1831), Г.К. Сорби (1864), Д.К. Чернова (1869) были заложены основы металловедения; Д.И. Менделеевым впервые был проведен геом. анализ диаграмм состав - св-во на примере изучения гидратов серной к-ты. К этому же периоду относятся работы В.Ф. Алексеева о взаимной р-римости жидкостей , Д.П. Коновалова - об упругости пара р-ров (см. Коновалова законы), И.Ф. Шредера - о температурной зависимости р-римости (см. Pacmвopuмость). Ha рубеже 19-20 вв. в связи с потребностями техники началось бурное развитие физико-химического анализа (А. Ле Шателье, Я. Вант Гофф, Ф. Осмонд, У. Робертс-Остен, Я. Ван Лаар и др.). Основополагающие теоретич. и эксперим. работы совр. физико-химического анализа принадлежат Н.С. Курнакову. Им были объединены в одно направление изучение сплавов и однородных р-ров и предложен термин "физико-химический анализ" (1913). Исследования комплексообразования в р-рах с работами И.И. Остромысленского (1911), П. Жоба (1928) и разработкой методов определения состава хим. соед. и констант r о щ е н к о Я.Г., Физико-химический анализ гомогенных и гетерогенных систем , К., 1978; Черногоренко В.Б., Прядко Л.Ф., "Ж. неорг. химии ", 1982, т. 27, № 6, с. 1527-30; Глазов В.М., "Изв. АН СССР. Сер . неорг. материалы", 1984, т. 20, № 6, с. 925-36; ФедоровП.И., Федоров П.П., Др о б о т Д.В., Физико-химический анализ безводных солевых систем, M., 1987. П.И. Федоров.

Еще
Похожие статьи

© 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.