В каких продуктах тяжелые металлы. Пестициды и тяжёлые металлы в продуктах питания

Что такое тяжелые металлы

Существует много определений тяжелых металлов – в зависимости от атомной массы (т.е. значения массы атома, выраженного в атомных единицах массы), плотности и других критериев. Если вы помните, как устроена таблица Менделеева, то знаете, что элементы в ней расположены, помимо прочего, по возрастанию атомной массы. Т.е. чем ближе к концу таблицы, тем элемент тяжелее.

Согласно Большому энциклопедическому словарю, «тяжелые металлы – это цветные металлы с плотностью, большей, чем у железа: Pb (свинец), Cu (медь), Zn (цинк), Ni (никель), Cd (кадмий), Co (кобальт), Sb (сурьма), Sn (олово), Bi (висмут), Hg (ртуть)». Некоторые классификации также относят к тяжелым металлам мышьяк, про действие которого отдельно рассказывать не надо.

Где можно встретить тяжелые металлы

Металлы – это природные элементы, в огромном количестве содержащиеся в окружающей среде и в микроскопических дозах – в организме каждого из нас. Более того, в предусмотренных природой количествах они необходимы нашим организмам для нормального функционирования. Однако еще Парацельс (швейцарско-немецкий врач и алхимик 16 века) учил, что любое вещество – яд, все зависит лишь от дозы. В случае с тяжелыми металлами это выражение – стопроцентное попадание.

С тяжелыми металлами человек соприкасается много где: они присутствуют в воздухе, которым мы дышим, в воде, которую пьем и которой моемся, в почве и, соответственно, в нашей пище, в косметике и т.д. В этой статье мы хотим сфокусироваться именно на тяжелых металлах в продуктах питания.

Хотя необходимо избегать попадания тяжелых металлов в организм, это не всегда возможно. Европейское агентство по безопасности продуктов питания (EFSA) выявило максимальные дозы разных тяжелых металлов , которые допустимо потреблять ежедневно и еженедельно в течение всей жизни без особого риска для здоровья. Эти дозы указываются в миллиграммах вещества на килограмм веса вашего организма – такая доза будет допустима для потребления ежедневно или еженедельно.

Как тяжелые металлы попадают к нам в пищу

Выхлопные газы автомобилей и дымовые выбросы промышленных предприятий содержат высокие концентрации тяжелых металлов. Через эти выбросы металлы попадают в воду, почву и воздух, а оттуда – во флору и фауну, представителей которых мы потом едим. К тому же пища может загрязниться тяжелыми металлами в результате неправильного хранения и использования некачественной упаковки.

Про собственно тяжелые металлы

Мы не будем рассказывать про все тяжелые металлы, иначе эта статья станет слишком длинной, однако скажем про пару самых «популярных» тяжелых металлов, которые у всех на устах в качестве главных страшилок (которыми они, к сожалению, действительно являются).

Свинец

Свинец в окружающей среде повсюду: в воде, воздухе, горных породах. Однако для человека свинец – токсичный тяжелый металл, отравление которым может приводить, помимо прочего, к раку, патологиям костей и сильным нарушениям функции головного мозга, почек, кишечника и т.д.
Отравление свинцом – самое распространенное отравление тяжелым металлом. Человек соприкасается со свинцом, вдыхая автомобильные выхлопные газы, используя промышленную косметику и даже пищу. В бензин, на котором работает большинство автомобилей, для увеличения октанового числа добавляют тетраэтилсвинец – соединение свинца, для человека являющееся сильным ядом, отравление которым поражает мозг и нервную систему, ведет к психическим расстройствам вплоть до летального эффекта.

Ртуть

Ртуть и ее соединения очень токсичны для человека. Не зря мамы в детстве пугали нас разбитыми градусниками. Ртуть может быть природного и антропогенного происхождения. В природе она появляется в атмосфере из-за выветривания пород, содержащих ртуть, а ртуть антропогенного происхождения попадает в атмосферу в первую очередь при сжигании угля на электростанциях. Отравление ртутью, как и марганцем, оказывает направленное действие на нервную систему, нарушая ее нормальное функционирование.

Около половины от всего промышленно произведенного объема ртути попадает в Мировой океан. Это значит, что употребление в пищу любых морепродуктов и рыбы – потенциальный риск получить с пищей дозу ртути, причем значительную, т.к. концентрация этого вещества в тканях живых существ будет намного больше, чем в воде.
Однако ученые выяснили, что есть продукт, употребление которого помогает ртути, содержащейся в рыбе, не усваиваться при пищеварении, а выводиться из организма в «нетронутом» виде. Как ни удивительно, но этот продукт – клубника . А также арахисовое масло. И растительный белок из конопли. Здорово, правда?

Кадмий

Кадмий попадает в окружающую среду с отходами металлургической промышленности, мусороперерабатывающих заводов и с неправильной утилизацией никель-кадмиевых источников тока (аккумуляторов). Кадмий опасен для человека в силу своих канцерогенных свойств и способности накапливаться в организме. При избытке соединений кадмия в организме или при отравлением (например, при вдыхании паров оксида кадмия) поражается нервная система, нарушается фосфорно-кальциевый обмен, ферментные процессы и структура белковых молекул. Хроническое отравление приводит к анемии и разрушению костей.

Ванадий

Соединения ванадия используются в сталелитейной, фармацевтической, текстильной промышленности, вводятся в виде добавок в состав красителей, протрав, чернил и т. д. Отравление ванадием – неприятная вещь. Как и свинец, ванадий обладает политропным действием на организм, т.е. влияет не на какой-то один конкретный орган или систему, а на много систем сразу. В результате отравления ванадием в организме сбивается регуляция биохимических процессов, начинаются воспалительные процессы кожи и слизистых оболочек дыхательных путей, функциональные изменения органов кровообращения, ослабление иммунитета и т.д.

Кобальт

Кобальт используют для производства материалов, которые характеризуются жаростойкостью и для твердых инструментов – резцов и сверл. В медицине металл применяется для стерилизации препаратов и инструментов, а также в лучевой терапии.

Отравление кобальтом в основном встречается у работников стальной промышленности или в случаях загрязнения кобальтом еды или питья. Такое отравление может стать причиной сердечной недостаточности, гиперплазии (т.е. доброкачественного патологического увеличения) щитовидной железы и нарушения ее функций, а также нарушения обоняния, потери аппетита, дыхательной недостаточности и даже бронхиальной астмы.

Скажем про несколько самых «популярных» тяжелых металлов, которые у всех на устах в качестве главных страшилок (которыми они, к сожалению, действительно являются).

Мышьяк.

химический элемент, содержащийся в небольших количествах во всех животных и растительных организмах. Мышьяк – высокотоксичный кумулятивный яд, поражающий нервную систему. Установлено, что в малых количествах мышьяк оказывает благотворное действие на организм человека: улучшает кроветворение, повышает усвоение азота и фосфора, ограничивает распад белков и ослабляет окислительные процессы. Эти свойства мышьяка используются при назначении с лечебной целью мышьяк содержащих препаратов. Неорганические препараты (раствор арсената (III) натрия, мышьяковистый ангидрид и др.) назначают при истощении, малокровии, некоторых кожных заболеваниях. В зубоврачебной практике применяют пасту с мышьяковистым ангидридом («белый мышьяк»). Органические препараты мышьяка применяются при лечении ряда инфекционных заболеваний.

В живые организмы мышьяк попадает с пищей. В достаточных количествах содержится в съедобных моллюсках, морской рыбе, других морепродуктах. Кроме того, попадает через сигаретный дым (в табаке содержится мышьяк) и накапливается главным образом в печени, селезенке, почках и крови (в эритроцитах), а также волосах и ногтях. Содержание мышьяка может увеличиваться за счет дополнительного поступления его в пищевые продукты с некоторыми пищевыми красителями, органическими кислотами и поташом.

Хронические пищевые отравления мышьяком возникают в случаях длительного употребления пищевых продуктов, содержащих наибольшие количества этого токсического вещества. При хронических отравлениях возникают множественные воспалительные процессы в периферической нервной системе (полиневриты), появляются нарушения и извращения кожной чувствительности.

Наибольшую угрозу для здоровья людей представляет загрязненная мышьяком вода, используемая для питья, приготовления пищи и орошения продовольственных сельскохозяйственных культур.

Длительное воздействие мышьяка, содержащегося в питьевой воде и пищевых продуктах, может приводить к развитию рака и к поражениям кожи. Такое воздействие вызывает сердечно-сосудистые заболеваниями, нейротоксичность и диабет.

Смертельная доза составляет 200 мг. Хроническая интоксикация наблюдается при потреблении 1–5 мг в сутки. При остром отравлении симптомы его обычно наступают через 20–30 мин. При этом наблюдаются резко выраженные признаки расстройства желудочно-кишечного тракта, чувство жжения и металлического вкуса во рту. Отмечается общая и сердечная слабость, резкое снижение кровяного давления, потеря сознания. Нередко отравление заканчивается летальным исходом. Если пострадавшего удается вывести из тяжелого состояния, у него наблюдаются угнетение центральной нервной системы, изнурительные боли в конечностях.



Поступая из желудочно-кишечного тракта, мышьяк и различные мышьяковистые соединения быстро поглощаются тканями организма, особенно печенью. Токсическое действие мышьяка связано с нарушением им окислительных процессов в тканях вследствие блокады ряда ферментных систем организма. Наиболее быстро под влиянием мышьяка разрушается нервная ткань.

Допустимая суточная доза (безопасная для организма человека) мышьяка составляет примерно 3 мг. С целью обеспечения безопасности при расчете допустимых уровней мышьяка в пищевых продуктах учитывается его суммарное поступление с питьевой водой, пищей и лекарственными средствами.

В основных пищевых продуктах содержание мышьяка регламентировано на уровне от 0,1 до 0,3 мг/кг (для рыбы и морепродуктов допускается более высокий уровень – до 5 мг/кг).



Поэтому очень важно контролировать содержание мышьяка в пищевых продуктах, кормах и воде. Для определения концентрации мышьяка необходимо провести химический анализ в аккредитованной лаборатории.

Свинец

Свинец в окружающей среде повсюду: в воде, воздухе, горных породах. Однако для человека свинец – токсичный тяжелый металл, отравление которым может приводить, помимо прочего, к раку, патологиям костей и сильным нарушениям функции головного мозга, почек, кишечника и т.д.

Отравление свинцом – самое распространенное отравление тяжелым металлом. Человек соприкасается со свинцом, вдыхая автомобильные выхлопные газы, используя промышленную косметику и даже пищу. В бензин, на котором работает большинство автомобилей, для увеличения октанового числа добавляют тетраэтилсвинец – соединение свинца, для человека являющееся сильным ядом, отравление которым поражает мозг и нервную систему, ведет к психическим расстройствам вплоть до летального эффекта.

Свинец депонируется в основном в скелете (до 90%) в форме труднорастворимого фосфата:

Используют как сухое озоление с добавкой нитрата магния или алюминия и кальция, так и мокрое - смесью азотной и хлорной кислот, применение серной кислоты не рекомендуется. Для текущих исследований - колориметрия с дитизоном, в который для устранения мешающего влияния цинка и олова добавляют цианид калия. Теряется в заметном количестве в присутствии хлоридов. Озоление веществ, содержащих свинец, проводится при температуре (500-600)є С.

Определение проводят согласно ГОСТ 26932-86, ИСО 6633-84.

Ртуть

Ртуть и ее соединения очень токсичны для человека. Ртуть может быть природного и антропогенного происхождения. В природе она появляется в атмосфере из-за выветривания пород, содержащих ртуть, а ртуть антропогенного происхождения попадает в атмосферу в первую очередь при сжигании угля на электростанциях. Отравление ртутью, как и марганцем, оказывает направленное действие на нервную систему, нарушая ее нормальное функционирование.

Около половины от всего промышленно произведенного объема ртути попадает в Мировой океан. Это значит, что употребление в пищу любых морепродуктов и рыбы – потенциальный риск получить с пищей дозу ртути, причем значительную, т.к. концентрация этого вещества в тканях живых существ будет намного больше, чем в воде.

Однако ученые выяснили, что есть продукт, употребление которого помогает ртути, содержащейся в рыбе, не усваиваться при пищеварении, а выводиться из организма в «нетронутом» виде. Как ни удивительно, но этот продукт – клубника. А также арахисовое масло. И растительный белок из конопли.

Из-за летучести элемента возможны потери даже при хранении и сушке образца. Поэтому рекомендуют только мокрое озоление смесями азотной, серной, иногда хлорной кислот с добавкой перманганата или молибдата при невысоких температурах и в специальной герметичной аппаратуре.

Определение ртути в пищевых продуктах и других биологических объектах требует точности и высокого мастерства. В настоящие время ртуть определяют тремя основными аналитическими методами: колориметрический, методом пламенной атомно-абсорбционной спектрометрии и методом нейтронно-активационного анализа.

Колориметрический метод. Этот метод основан на переводе металла, содержащегося в навески, в комплекс с дитизоном, который экстрагируют органическим растворителем и затем колориметрируют. Эти операции длительны; предел обнаружения составляет около 0,05 мг/кг. Для определения требуется большая навеска (5 г) образца.

Метод пламенной атомно-абсорбционной спектрометрии. Методом пламенной атомно-абсорбционной спектрометрии в настоящие время широко используется для определения ртути. Имеется оборудование, позволяющее приспособить стандартную атомно-абсорбционную спектрометрию для так называемой техники холодного испарения. При этом используются циркуляционные и нециркуляционные методы. В первом случае содержание ртути в образце измеряют по значению мгновенной абсорбции ртути при прохождении ее паров через абсорбционную ячейку. При циркуляционных методах пары ртути накапливаются постепенно до достижения постоянной абсорбции. Для перевода ионов ртути в молекулярную форму используется хлорид олова. Метод применим для растворов, содержащих ртуть в форме, легко поддающейся восстановлению хлоридом олова.

Для определения ртути используются и другие аналитические методы.

Нейтронно-активационный анализ, например, характеризуется высокой селективностью и точностью. Он эффективен для определения ртути в небольших навесках при проведении общего анализа пищи.

Арбитражный метод - атомно-абсорбционный с использованием техники низкотемпературного холодного пара. Для текущих, исследований -- колориметрия с йодидом меди. Колориметрия с дитизоном не рекомендуется, так как для большинства продуктов не позволяет определять величины ПДК. Метилртуть определяют методом газожидкостной хроматографии. Также определяют содержание ртути согласно нормативным документам ГОСТ 26927-86.

Кадмий

Кадмий попадает в окружающую среду с отходами металлургической промышленности, мусороперерабатывающих заводов и с неправильной утилизацией никель-кадмиевых источников тока (аккумуляторов). Кадмий опасен для человека в силу своих канцерогенных свойств и способности накапливаться в организме. При избытке соединений кадмия в организме или при отравлением (например, при вдыхании паров оксида кадмия) поражается нервная система, нарушается фосфорно-кальциевый обмен, ферментные процессы и структура белковых молекул. Хроническое отравление приводит к анемии и разрушению костей.

Кадмий относятся к сильноядовитым веществам, его смертельная доза для человека составляет 150 мг/кг массы тела. Поведение кадмия в организме человека характеризуется чрезвычайно большим периодом полувыведения (в среднем 25 лет), накоплением в основном в печени и почках (до 80 %); ингибированием синтеза ДНК, белков и нуклеиновых кислот; влиянием на активность ферментов и интенсивным взаимодействием с другими двухвалентными металлами (цинк, кальций, железо, селен, кобальт).

Как и многие другие тяжелые металлы, кадмий имеет отчетливую тенденцию к накоплению в организме - период его полувыведения составляет 10-35 лет. К 50 годам его общее весовое содержание в теле человека может достигать 30-50 мг. Главным "хранилищем" кадмия в организме служат почки (30-60% всего количества) и печень (20-25%). Остальной кадмий находится в поджелудочной железе, селезенке, трубчатых костях, других органах и тканях. В основном кадмий находится в организме в связанном состоянии - в комплексе с белком-металлотионеином (являющимся, таким образом естественной защитой организма, по последним данным альфа-2 глобулин также связывает кадмий), и в таком виде он менее токсичен, хотя и далеко не безвреден. Даже "связанный" кадмий, накапливаясь годами способен привести к неприятностям со здоровьем, в частности к нарушению работы почек и повышенной вероятности образования почечных камней. К тому же часть кадмия остается в более токсичной ионной форме.

В основных пищевых продуктах содержание кадмия регламентировано на уровне от 0,05 до 0,2 мг/кг. Отдельную группу риска составляют курящие люди, - в одной пачке сигарет может находиться до 1 мкг кадмия.

Ванадий

Соединения ванадия используются в сталелитейной, фармацевтической, текстильной промышленности, вводятся в виде добавок в состав красителей, протрав, чернил и т. д. Отравление ванадием – неприятная вещь. Как и свинец, ванадий обладает политропным действием на организм, т.е. влияет не на какой-то один конкретный орган или систему, а на много систем сразу. В результате отравления ванадием в организме сбивается регуляция биохимических процессов, начинаются воспалительные процессы кожи и слизистых оболочек дыхательных путей, функциональные изменения органов кровообращения, ослабление иммунитета и т.д.

Дефицит

Недостаток ванадия может повысить риск развития сахарного диабета и, наоборот, при сахарном диабете развивается его дефицит.

Также с нехваткой в организме этого элемента связана специфическая ванадий-дефицитная шизофрения, атеросклероз. Недостаток выявляется с помощью биохимического анализа крови, где отмечаются изменения в таких показателях, как фосфолипиды (повышены), триглицериды (повышены), холестерин (снижен).

Передозировка

Высокую концентрацию ванадия можно встретить у работников, занятых на производстве асфальта, стекла и топлива. Они чаще болеют астмой, экземой, воспалительными заболеваниями кожи, органов дыхания и зрения.

Отравление возникает при дозировке всего 0, 25 мг, а 2-4 мг могут привести к летальному исходу. Избыток у пострадавших проявляется в виде острой или хронической интоксикации.

Острая интоксикация сопровождается воспалением слизистых оболочек глотки, лёгких и глаз, аллергическими реакциями на коже. В анализе крови отмечается снижение лейкоцитов (лейкопения) и уровня гемоглобина (анемия).

При хронической интоксикации снижается концентрация аскорбиновой кислоты, падает количество цистеина в волосах, увеличивается риск развития онкопатологии и болезней органов дыхания.

Кобальт

Кобальт используют для производства материалов, которые характеризуются жаростойкостью и для твердых инструментов – резцов и сверл. В медицине металл применяется для стерилизации препаратов и инструментов, а также в лучевой терапии.

Отравление кобальтом в основном встречается у работников стальной промышленности или в случаях загрязнения кобальтом еды или питья. Такое отравление может стать причиной сердечной недостаточности, гиперплазии (т.е. доброкачественного патологического увеличения) щитовидной железы и нарушения ее функций, а также нарушения обоняния, потери аппетита, дыхательной недостаточности и даже бронхиальной астмы.

Выходные данные сборника:

Высокое качество и безопасность продуктов питания является в настоящее время одной из существенных предпосылок сохранения продовольственной независимости Казахстана и важнейшей задачей государственной политики в области здорового питания.

Уровень контаминантов в пищевом сырье за последние пять лет увеличился почти в пять раз. Токсичные элементы обнаруживаются в 90 % исследуемых продуктов питания. В данных условиях возникла необходимость расширения и углубления представлений о возможных путях загрязнения продовольственного сырья, технологических приемах переработки, позволяющих снизить вредное воздействие .

Качество молочных продуктов во многом зависит от экологических условий получения молока. Активная антропогенная деятельность способствует загрязнению природной среды вредными ингредиентами, достигшими критических уровней в большинстве промышленных центров . Распространенность тяжелых металлов в окружающей среде в связи с их неблагоприятным влиянием на организм является актуальной проблемой, прежде всего для регионов повышенного техногенного загрязнения, к которым принадлежит и наша область .

Негативное влияние экологического фактора приводит к нарушениям обмена веществ у животных, что, как правило, сопровождается снижением продуктивности, ухудшением качества молока, эндемическими болезнями. Исследованиями последних лет установлена прямая связь между поступлением тяжелых металлов с кормами и водой и их содержанием в получаемом молоке. В результате в молочном сырье накапливаются крайне нежелательные микроэлементы. К наиболее опасным из них относятся ртуть, свинец, кадмий, кобальт, никель, цинк, олово, сурьма, медь, молибден, ванадий, мышьяк. Попадают металлы в биосферу при высокотемпературных технологических процессах (металлургии, сжигании топлива, обжиге цемента и др.) в виде газов, и аэрозолей (возгонка металлов), пылевидных частиц и жидком виде (технологические сточные воды). Они способны мигрировать в окружающей среде и попадать в растения. В глобальных масштабах происходит процесс, называемый сегодня «металлическим прессом на биосферу» .

В связи с вышесказанным, определение тяжелых металлов в молоке и кисломолочных продуктахпредставляется актуальным.

Целью данной работы явилась определение тяжелых металловв молоке и кисломолочных продуктах отечественного и зарубежного производителей.

Анализ образцов на содержание цинка, свинца и кадмия выполнен в аккредитованной лаборатории биогеохимии и экологии Западно-Казахстанского государственного университета им. М. Утемисова. Содержание тяжелых металлов было определено на приборе - анализатор жидкости вольтамперометрический «Экотест-ВА». Подготовка образцов проводилась методом минерализации «до влажных солей» .

Результаты анализа тяжелых металлов в содержании молока оте­чественного и зарубежного производителей представлены в таблице 1.

Таблица 1

Концентрация тяжелых металлов в содержании молока отечественного и зарубежного производителей, мг/дм 3

Исследуемые образцы

цинк

Кадмий

свинец

Образец № 1

Образец № 2

Образец № 3

Как видно из таблицы 1, содержание цинка в образцах варьирует в пределах 0,0204-0,0874 мг/дм 3 и составляет в среднем 1 % от предельно-допустимой концентрации. Содержание кадмия в образцах колеблется от 0,0011 до 0,0018 мг/дм 3 , что составляет в среднем 7,5 % от ПДК, среднее значение свинца составляет 0,0181 мг/ дм 3 или 0,36 ПДК.

Далее нами были определены концентрации ионов цинка, кадмия и свинца в содержании йогурта. Результаты анализа тяжелых металлов в содержании йогуртаотечественного и зарубежного производителей представлены в таблице 2.

Как видно из таблицы 2, содержание цинка в образцах варьирует от 0,0004 до 0,010 мг/кг, содержание кадмия составляет от 6 до 11 %от предельно-допустимой концентрации, среднее значение свинца составляет 0,020 мг/кг.

Таблица 2

Концентрация тяжелых металлов в содержании йогурта, мг/кг

Исследуемые образцы

цинк

Кадмий

свинец

Образец № 1

Образец № 2

Образец № 3

Результаты анализа тяжелых металлов в содержании кефираотечественного и зарубежного производителей представлены в таблице 3.

Исходя из таблицы 3 видно, что содержание цинка в образцах варьирует от 0,0600 до 0,1766 мг/кг. Содержание кадмия колеблется в пределах 0,0008-0,0011 мг/кг, что не превышает предельно-допустимую концентрацию. Содержание свинца составляет в среднем 0,0151 мг/кг.

Таблица 3

Концентрация тяжелых металлов в содержании кефира, мг/кг

Исследуемые образцы

цинк

Кадмий

свинец

Образец № 1

Образец № 2

Образец № 3

Результаты анализа тяжелых металлов в содержании творогаотечественного и зарубежного производителей представлены в таблице 4.Исходя из таблицы 4 видно, что наибольшее содержание цинка наблюдается у образца № 1, по содержанию кадмия - у образца № 3, по содержанию кадмия - у образца № 2. во всех исследуемых образцах содержание тяжелых металлов не превышает предельно-допустимую концентрацию токсичных веществ.

Таблица 4

Концентрация тяжелых металлов в содержании творога, мг/кг

Исследуемые образцы

цинк

Кадмий

свинец

Образец № 1

Образец № 2

Образец № 3

Таким образом, проведенный анализ некоторых токсичных веществ в молочных продуктах, показал, что средний уровень концентрации тяжелых металлов не превышает предельно-допустимых значений токсичных веществ в молочных продуктах.

Список литературы:

  1. Бударков В.А., Макаров В.В. Методологические аспекты исследования комбинированного действия факторов радиационной, химической и биологической природы // Вестник сельскохозяйственной науки. 1992. - №4. - С. 122-130.
  2. Бугреева H.H. Содержание соединений свинца и кадмия в молоке и молочных продуктах и пути их снижения при производстве молокопродуктов: Автреф. дис. .к-та вет. наук. Москва, 1995. - 24 с.
  3. Васильев A.B., Ратников А.Н., Алексахин P.M. Закономерности перехода радионуклидов и тяжелых металлов в системе почва растение - животное -продукт животноводства // Химия в сельском хозяйстве. - 1995. - № 4. - С. 16-18.
  4. Ревелль П., Ревелль Ч. Среда нашего обитания, книга четвертая. - М. - «Мир». - 1995. - 192 с.
  5. ГОСТ Р 51301-99 Продукты пищевые и продовольственное сырье. Инверсионно-вольтамперометрические методы определения содержания токсичных элементов (кадмия, свинца, меди и цинка).

Мышьяк - высокотоксичный кумулятивный протоплазматический яд, поражающий нервную систему. Смертельная доза 60--200 мг. Хроническая интоксикация наблюдается при потреблении 1--5 мг в день. ФАО/ВОЗ установлена недельная безопасная доза 50 мкг/кг. В рыбах содержание мышьяка может достигать 8 мг/кг, а в устрицах и креветках -- до 45 мг/кг.

Токсическое действие соединений мышьяка обусловлено блокированием сульфгидрильных групп ферментов и других биологически активных веществ.

Определить мышьяк в пределах 1-50 мг/л можно с помощью колориметрических методов анализа на основе диэтилдитиокарбамата серебра. Удобным является метод атомно-абсорбционной спектроскопии. Он основан на определении арсина, полученного при восстановлении соединений мышьяка. Имеющиеся в продаже приборы для выделения арсина используются в сочетании со стандартным оборудованием. При анализе мышьяка рекомендуется использовать пламя закись азота-ацителен. Из-за молекулярной абсорбции газов пламени могут возникать помехи в верхнем диапазоне ультрафиолетовой части спектра, где находятся наиболее чувствительные линии мышьяка. Эти помехи устраняются при корректировке фона.

Для определения микроколичеств мышьяка с успехом использовался нейтронно-активационный анализ. Это позволило провести точные определения

мышьяка в очень малых образцах, например один волос.

Часто бывает необходимо установить тип химического соединения мышьяка. Для отличия в водных растворов трехвалентного мышьяка от пятивалентного использовали инверсионную полярографию. Для разделения органических соединений мышьяка от неорганических использовался метод газожидкостной хроматографии.

Арбитражный метод - колориметрия с диэтилдитиокарбаматом серебра после отгонки мышьяка из гидролизата (или раствора золы) в виде гидрида или трихлорида мышьяка. Атомно-абсорбционное определение возможно только после предварительного концентрирования в виде гидрида AsH3 и использования графитовой кюветы.

Кадмий -- высокотоксичный кумулятивный яд, блокирующий, работу ряда ферментов; поражает почки и печень. ФАО/ВОЗ установлена недельная безопасная доза 6,7--8,3 мкг/кг. В устрицах и печени животных и рыб может накапливаться до значительных величин; в растительных продуктах зависит от дозы удобрения суперфосфатом.

Токсическое действие соединений кадмия на организм вызывается тем, что ионы этих металлов вступают во взаимодействие с сульфгидрильными SH-группами белков, ферментов и аминокислот. При взаимодействии ионов металлов с SH-группами образуются слабодиссоциирующие и, как правило, нерастворимые соединения. Поэтому блокирование сульфгидрильных групп приводит к подавлению активности ферментов и свертыванию белков. Ионы двухвалентных металлов блокируют одновременно две SH-группы:

В таблице 2 приведены среднее содержание и ПДК Сd в пищевых продуктах.

Таблица 2. Среднее содержание и ПДК Сd в пищевых продуктах.

Пищевые продукты

ПДК, мг/кг

Хлебобулочные и

кондитерские изделия

Зерновые

Зернобобовые

Бараночные изделия

Отруби пшеничные

Соль поваренная

Сахар(песок)

Орехи (ядро)

Какао-порошок и шоколад

Молочные изделия

Молоко, кисломолочные изделия

Молоко сгущенное

консервированное

Молоко сухое

Сыры, творог

Масло сливочное

Растительные продукты

Масло растительное

Маргарины и жиры

Овощи свежие и свежемороженые

Грибы свежие, консервированные

Для определения кадмия, как правило, требуется предварительное концентрирование, так как содержание металла в продуктах питания обычно мало. Комитет по аналитическим методам рекомендует проводить кислотную минерализацию серной кислотой с добавлением перекиси водорода. При сухом озолении могут быть потери кадмия, так как при температуре свыше 500єС он испаряется. Содержание кадмия может быть установлено и путем образования комплексов с тетраметилендитиокарбамат-аммония, а также экстракцией кадмия изобутилметилкетоном.

Для определения кадмия в пищевых экстрактах может быть также использован колориметрический метод на основе дитизона.

В настоящее время наиболее широко применяется атомно-абсорбционная спектрофотометрия. Использование воздушно-ацетиленового пламени позволяет получить хорошие результаты, однако пламя должно тщательно контролироваться. Беспламенная атомно-абсорбционная спектрофотометрия позволяет определять кадмий на уровне 5 мкг/кг. Однако из-за химического влияния некоторых соединений, например солей калия, результаты могут быть искажены.

Есть данные по определению кадмия методом вольтамперометрии с анодным растворением. Результаты хорошо согласуются с данными атомно-абсорбционной спектрометрии. Достаточно надежные и точные данные удается получить с помощью нейтронно-активационного анализа. С использованием нового оборудования и повышением точности стало ясно, что данные, полученные ранее с помощью атомно-абсорбционной спектрофотомерии и менее точной пламенной фотометрии, не являются достоверными. Это объясняется несовершенством современных аналитических методов.

Определение кадмия в порошковом обезжиренном молоке

Необходимые реактивы. Первичный кислый фосфорнокислый аммоний, 0.5% раствор вес/об. (используется для химической модификации аналита). Примеси следов металлов в модификаторе должны быть удалены комплексообразованием АПДК и экстракцией МИБК. Деионизованная дистиллированная вода. ТRITON Х-100, 0.01% раствор в воде (об/об).

Подготовка образца

Растворяют порошок молока (1.25 г) в деионизованной дистиллированной воде (25 мл) при хорошем перемешивании с использованием магнитной мешалки или ультразвуковой бани. Немного ТRITON Х-100 0.01% об. (1 мл) можно добавить для получения лучших диспергирующих свойств.

Приготовление градуировочных растворов

Водные стандарты: исходный стандарт 1000 мкг Cd/л в 1 М азотной кислоте. Готовят градуировочный раствор с концентрацией 10 мкг Cd/л разбавлением исходного раствора.

Процедура градуировки

Методом стандартных добавок с использованием программируемого дозатора образцов. Рекомендуемый объём образца - 10 мкл, объём стандартных добавок - 5 и 10 мкл, 10 мкл модификатора и бланковый раствор до общего для всех растворов объёма 30 мкл.

Так как Cd обычно присутствует в малых количествах, градуировочный раствор Cd должен иметь концентрацию 5 мкг/л или меньше. Для кадмия температура озоления должна быть не больше 750єС.

Свинец - высокотоксичный кумулятивный яд, поражающий нервную систему, почки. Хроническая интоксикация наступает при потреблении 1-3 мг в сутки. ФАО/ВОЗ установлена общая недельная безопасная доза 50 мкг/кг массы тела. Так как часть свинца поступает с воздухом и водой, с пищей человек может потреблять 300-400 мкг в день.

В моллюсках содержание свинца может достигать 15 мг/кг. В консервированных (в металлической таре) продуктах, содержащих кислоты, особенно в плодовых и овощных, содержание свинца может увеличиваться в 10 раз и более по сравнению с естественным уровнем.

Свинец депонируется в основном в скелете (до 90%) в форме труднорастворимого фосфата:

Используют как сухое озоление с добавкой нитрата магния или алюминия и кальция, так и мокрое - смесью азотной и хлорной кислот, применение серной кислоты не рекомендуется. Для текущих исследований - колориметрия с дитизоном, в который для устранения мешающего влияния цинка и олова добавляют цианид калия. Теряется в заметном количестве в присутствии хлоридов. Озоление веществ, содержащих свинец, проводится при температуре (500-600)є С.

Определение проводят согласно ГОСТ 26932-86, ИСО 6633-84.

Ртуть - высокотоксичный, кумулятивный яд, поражающий нервную систему и почки. Наиболее токсичны некоторые органические соединения, особенно метилртуть, составляющая в рыбе от 50 до 90% общей ртути. Установлена недельная безопасная доза общей ртути 5 мкг/кг массы тела, в том числе метилртути 3,3 мкг/кг. В наибольших количествах содержится в рыбе, обычно пропорционально ее возрасту и размеру, и особенно велико ее содержание у хищных рыб. При кулинарной тепловой обработке рыб теряется около 20% ртути.

Токсическое действие соединений ртути на организм вызывается тем, что ионы этих металлов вступают во взаимодействие с сульфгидрильными SH-группами белков, ферментов и аминокислот. При взаимодействии ионов металлов с SH-группами образуются слабодиссоциирующие и, как правило, нерастворимые соединения. Поэтому блокирование сульфгидрильных групп приводит к подавлению активности ферментов и свертыванию белков. Ионы двухвалентных металлов блокируют одновременно две SH-группы:


Из-за летучести элемента возможны потери даже при хранении и сушке образца. Поэтому рекомендуют только мокрое озоление смесями азотной, серной, иногда хлорной кислот с добавкой перманганата или молибдата при невысоких температурах и в специальной герметичной аппаратуре.

Определение ртути в пищевых продуктах и других биологических объектах требует точности и высокого мастерства. В настоящие время ртуть определяют тремя основными аналитическими методами: колориметрический, методом пламенной атомно-абсорбционной спектрометрии и методом нейтронно-активационного анализа.

Колориметрический метод. Этот метод основан на переводе металла, содержащегося в навески, в комплекс с дитизоном, который экстрагируют органическим растворителем и затем колориметрируют. Эти операции длительны; предел обнаружения составляет около 0,05 мг/кг. Для определения требуется большая навеска (5 г) образца.

Метод пламенной атомно-абсорбционной спектрометрии. Методом пламенной атомно-абсорбционной спектрометрии в настоящие время широко используется для определения ртути. Имеется оборудование, позволяющее приспособить стандартную атомно-абсорбционную спектрометрию для так называемой техники холодного испарения. При этом используются циркуляционные и нециркуляционные методы. В первом случае содержание ртути в образце измеряют по значению мгновенной абсорбции ртути при прохождении ее паров через абсорбционную ячейку. При циркуляционных методах пары ртути накапливаются постепенно до достижения постоянной абсорбции. Для перевода ионов ртути в молекулярную форму используется хлорид олова. Метод применим для растворов, содержащих ртуть в форме, легко поддающейся восстановлению хлоридом олова.

Для определения ртути используются и другие аналитические методы.

Нейтронно-активационный анализ, например, характеризуется высокой селективностью и точностью. Он эффективен для определения ртути в небольших навесках при проведении общего анализа пищи.

Арбитражный метод - атомно-абсорбционный с использованием техники низкотемпературного холодного пара. Для текущих, исследований -- колориметрия с йодидом меди. Колориметрия с дитизоном не рекомендуется, так как для большинства продуктов не позволяет определять величины ПДК. Метилртуть определяют методом газожидкостной хроматографии. Также определяют содержание ртути согласно нормативным документам ГОСТ 26927-86.

Некоторые металлы необходимы для нормального протекания физиологических процессов в организме человека. Однако при повышенных концентрациях они токсичны. Соединения металлов, попадая в организм, взаимодействуют с рядом ферментов, подавляя их активность.

Широкое токсическое воздействие проявляют тяжелые металлы. Это воздействие может быть широким (свинец) или более ограниченным (кадмий). В отличие от органических загрязняющих веществ, металлы не разлагаются в организме, а способны лишь к перераспределению. Живые организмы имеют механизмы нейтрализации тяжелых металлов.

Загрязнение пищевых продуктов наблюдается, когда сельскохозяйственные культуры выращиваются на полях вблизи промышленных предприятий или загрязнены городскими отходами. Медь и цинк концентрируются преимущественно в корнях, кадмий -- в листьях.

Hg (ртуть): соединения ртути применяются в качестве фунгицидов (например, для протравливания посевного материала), используются при производстве бумажной массы, служат катализатором при синтезе пластмасс. Ртуть используется в электротехнической и электрохимической промышленности. Источниками ртути служат ртутные батареи, красители, люминесцентные лампы. Вместе с отходами производства ртуть в металлической или связанной форме попадает в промышленные стоки и воздух. В водных системах ртуть с помощью микроорганизмов может превращаться из относительно малотоксичных неорганических соединений в высокотоксичные органические (метилртуть (CH3)Hg). Загрязненной оказывается, главным образом, рыба.

Метилртуть может стимулировать изменения в нормальном развитии мозга детей, а в более высоких дозах вызывать неврологические изменения у взрослых. При хроническом отравлении развивается микромеркуриализм -- заболевание, которое проявляется в быстрой утомляемости, повышенной возбудимости с последующим ослаблением памяти, неуверенности в себе, раздражительности, головных болях, дрожании конечностей.

Руководством Codex CAC/GL 7 для любых видов рыбы, поступающих в международную торговлю (кроме хищной), установлен уровень 0,5 мг/кг, для хищной рыбы -- (акула, меч-рыба, тунец) -- 1 мг/кг.

Pb (свинец): свинец применяется для производства аккумуляторных батарей, тетраэтилсвинца, для покрытия кабелей, в производстве хрусталя, эмалей, замазок, лаков, спичек, пиротехнических изделий, пластмасс и т. п. Такая активная деятельность человека привела к нарушениям в природном цикле свинца.

Основной источник поступления свинца в организм -- растительная пища.

Попадая в клетки, свинец (как и многие другие тяжелые металлы) дезактивирует ферменты. Реакция идет по сульфгидрильным группам белковых составляющих ферментов с образованием --S--Pb--S--.

Свинец замедляет познавательное и интеллектуальное развитие детей, увеличивает кровяное давление и вызывает сердечнососудистые болезни взрослых. Изменения нервной системы проявляются в головной боли, головокружении, повышенной утомляемости, раздражительности, в нарушениях сна, ухудшении памяти, мышечной гипотонии, потливости. Свинец может заменять кальций в костях, становясь постоянным источником отравления. Органические соединения свинца еще более токсичны.

В течение прошлого десятилетия уровни свинца в пище значительно снизились благодаря сокращению его эмиссии автомобилями. Высокоэффективным связующим для попавшего в организм свинца оказался пектин, содержащийся в кожуре апельсинов. Cd (кадмий): кадмий активнее свинца, и отнесен ВОЗ к веществам, наиболее опасным для здоровья человека. Он находит все большее применение в гальванике, производстве полимеров, пигментов, серебряно-кадмиевых аккумуляторов и батареек. На территориях, вовлеченных в хозяйственную деятельность человека, кадмий накапливается в различных организмах и с возрастом способен увеличиваться до критических для жизни величин. Отличительные свойства кадмия -- высокая летучесть и способность легко проникать в растения и живые организмы за счет образования ковалентных связей с органическими молекулами белков. В наибольшей мере аккумулирует кадмий из почвы растение табака.

Кадмий по химическим свойствам родственен цинку, может замещать цинк в ряде биохимических процессов в организме, нарушая их (например, выступать как псевдоактиватор белков). Смертельной для человека может быть доза в 30--40 мг. Особенностью кадмия является большое время удержания: за 1 сутки из организма выводится около 0,1% полученной дозы.

Симптомы кадмиевого отравления: белок в моче, поражение центральной нервной системы, острые костные боли, дисфункция половых органов. Кадмий влияет на кровяное давление, может служить причиной образования камней в почках (накопление в почках особенно интенсивно). Для курильщиков или занятых на производстве с использованием кадмия добавляется эмфизема легких.

Не исключено, что это канцероген для человека. Содержание кадмия должно быть уменьшено, в первую очередь, в диетических продуктах. Максимальные уровни должны быть установлены настолько низкими как это разумно достижимо.

Предельно допустимые концентрации тяжелых металлов и мышьяка в продовольственном сырье и пищевых продуктах.

Похожие статьи

© 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.